CHEMISTRY A European Journal

Supporting Information

Gold- or Silver-Catalyzed Syntheses of Pyrones and Pyridine Derivatives: Mechanistic and Synthetic Aspects

Johannes Preindl, Kévin Jouvin, Daniel Laurich, Günter Seidel, and Alois Fürstner*[a]

chem_201503403_sm_miscellaneous_information.pdf

Crystallographic Section

Figure S-1. Structure of complex 12b ($\mathrm{L}=\mathrm{XPhos}$) in the solid state; only the complex cation is depicted, whereas the escorting $\left[\mathrm{NTf}_{2}\right]^{-}$anion as well as co-crystallized $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ are omitted for clarity.

 whereas the escorting $\left[\mathrm{NTf}_{2}\right]^{-}$anion as well as co-crystallized $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ are omitted for clarity

Figure S-3. Structure of complex 15 in the solid state; only the complex cation is depicted for clarity

X-ray Crystal Structure Analysis of Complex 12b: $\mathrm{C}_{74} \mathrm{H}_{109} \mathrm{Au}_{2} \mathrm{Cl}_{2} \mathrm{~F}_{6} \mathrm{NO}_{5} \mathrm{P}_{2} \mathrm{~S}_{2}, M_{r}=1797.52 \mathrm{~g} \cdot \mathrm{~mol}^{-1}$, colorless needle, crystal size $0.23 \times 0.05 \times 0.04 \mathrm{~mm}$, monoclinic, space group $P 2_{1} / c$, $a=14.610(3) \AA$ A,$b=19.683(4)$ $\AA, c=27.269(5) \AA, \beta=100.485(3)^{\circ}, V=7711(3) \AA^{3}, T=100 \mathrm{~K}, Z=4, D_{\text {calc }}=1.548 \mathrm{~g} \cdot \mathrm{~cm}^{3}, \lambda=0.71073 \AA$, $\mu\left(M o-K_{\alpha}\right)=4.028 \mathrm{~mm}^{-1}$, Multi-Scan absorption correction ($\mathrm{T}_{\min }=0.49, \mathrm{~T}_{\max }=0.88$), Bruker-AXS Kappa Mach3 APEX-II diffractometer, $1.75<\theta<27.50^{\circ}$, 176078 measured reflections, 17692 independent reflections, 15300 reflections with $I>2 \sigma(I)$; structure solved by direct methods and refined by fullmatrix least-squares against F^{2} to $R_{1}=0.030[I>2 \sigma(I)], w R_{2}=0.079,856$ parameters, H atoms riding, $S=$ 1.041, residual electron density $+2.7 /-1.5$ e \AA^{-3}. CCDC 1417652

X-ray Crystal Structure Analysis of Complex 12c: $\mathrm{C}_{61.64} \mathrm{H}_{86.27} \mathrm{Au}_{2} \mathrm{Cl}_{1.27} \mathrm{~F}_{6} \mathrm{~N}_{5} \mathrm{O}_{5} \mathrm{~S}_{2}, M_{r}=1594.32 \mathrm{~g} \cdot \mathrm{~mol}^{-1}$, colorless plate, crystal size $0.24 \times 0.17 \times 0.06 \mathrm{~mm}$, orthorhombic, space group Pbca, a = 22.049(4) $\AA, b=$ $23.9661(14) \AA, c=25.927(5) \AA, V=13700(4) \AA^{3}, T=100 \mathrm{~K}, Z=8, D_{\text {calc }}=1.546 \mathrm{~g} \cdot \mathrm{~cm}^{3}, \lambda=0.71073 \AA$, $\mu\left(M o-K_{\alpha}\right)=4.453 \mathrm{~mm}^{-1}$, Multi-Scan absorption correction ($\mathrm{T}_{\text {min }}=0.40, \mathrm{~T}_{\max }=0.73$), Bruker AXS EnrafNonius KappaCCD diffractometer, $2.63<\theta<35.01^{\circ}, 264725$ measured reflections, 30068 independent reflections, 21100 reflections with $I>2 \sigma(I)$; structure solved by direct methods and refined by fullmatrix least-squares against F^{2} to $R_{1}=0.041[I>2 \sigma(I)], w R_{2}=0.102$, absolute structure parameter $=$ $-0.2(6), 813$ parameters, H atoms riding, $S=1.120$, residual electron density $+2.6 /-2.4$ e \AA^{-3}. CCDC 1417653

X-ray Crystal Structure Analysis of Complex 15: $\mathrm{C}_{51} \mathrm{H}_{44} \mathrm{Au}_{2} \mathrm{~F}_{6} \mathrm{~N}_{2} \mathrm{O}_{6} \mathrm{P}_{2} \mathrm{~S}_{2}, M_{r}=1414.88 \mathrm{~g} \cdot \mathrm{~mol}^{-1}$, colorless
plate, crystal size $0.09 \times 0.08 \times 0.02 \mathrm{~mm}$, triclinic, space group $P 1, a=12.074(3) \AA, b=14.204(3) \AA, c=$ 16.028(3) $\AA, \alpha=80.320(4)^{\circ}, \beta=85.057(4)^{\circ}, \gamma=67.709(4)^{\circ}, V=2506.6(9) \AA^{3}, T=100 \mathrm{~K}, Z=2, D_{\text {calc }}=1.875$ $\mathrm{g} \cdot \mathrm{cm}^{3}, \lambda=0.71073 \AA, \mu\left(\mathrm{Mo}^{\prime}-K_{\alpha}\right)=6.067 \mathrm{~mm}^{-1}$, Multi-Scan absorption correction ($\mathrm{T}_{\min }=0.57, \mathrm{~T}_{\max }=0.89$), Bruker-AXS Kappa Mach3 APEX-II diffractometer, $1.29<\theta<31.03^{\circ}, 73431$ measured reflections, 15987 independent reflections, 13402 reflections with $I>2 \sigma(I)$; structure solved by direct methods and refined by full-matrix least-squares against F^{2} to $R_{1}=0.022[I>2 \sigma(I)]$, w $R_{2}=0.058,643$ parameters, H atoms riding, $S=1.085$, residual electron density $+1.4 /-1.3$ e \AA^{-3}. CCDC 1417651

General. All reactions were carried out under Ar in flame-dried glassware. The solvents were purified by distillation over the indicated drying agents and were transferred under Ar : THF, $\mathrm{Et}_{2} \mathrm{O}$ (Mg /anthracene), $\mathrm{MeCN}, \mathrm{CH}_{2} \mathrm{Cl}_{2}\left(\mathrm{CaH}_{2}\right)$, $\mathrm{MeOH}(\mathrm{Mg})$, hexane $(\mathrm{Na} / \mathrm{K})$, toluene $(\mathrm{Na} / \mathrm{K})$. DMF, pyridine and NEt_{3} were dried by an absorption solvent purification system based on molecular sieves. HMPA and $i \mathrm{Pr}_{2} \mathrm{NH}$ were purified by distillation over CaH_{2} and transferred under Ar. $\mathrm{CH}_{3} \mathrm{NO}_{2}$ and HOAc were used as received. Flash chromatography: Merck silica gel $60(40-63 \mu \mathrm{~m})$. NMR: Spectra were recorded a Bruker DPX 300, AV 400, AV 500 or AV 600 spectrometer in the solvents indicated; chemical shifts (δ) are given in ppm relative to TMS, coupling constants (J) in Hz . The solvent signals were used as references and the chemical shifts converted to the TMS scale $\left(\mathrm{CDCl}_{3}: \delta_{\mathrm{C}} \equiv 77.16 \mathrm{ppm}\right.$; residual CHCl_{3} in CDCl_{3} : $\delta_{\mathrm{H}} \equiv 7.26$ ppm; $\mathrm{CD}_{2} \mathrm{Cl}_{2}: \delta_{\mathrm{C}} \equiv 53.84 \mathrm{ppm}$; residual $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ in $\mathrm{CD}_{2} \mathrm{Cl}_{2}: \delta_{\mathrm{H}} \equiv 5.32 \mathrm{ppm} ; \mathrm{C}_{6} \mathrm{D}_{6} \delta_{\mathrm{H}} \equiv 7.15 \mathrm{ppm}, \delta_{\mathrm{C}} \equiv 128.00$ $\mathrm{ppm} ;\left[\mathrm{D}_{6}\right]$-DMSO: $\delta_{\mathrm{H}} \equiv 2.50 \mathrm{ppm}, \delta_{\mathrm{C}} \equiv 39.5 \mathrm{ppm} ;\left[\mathrm{D}_{5}\right]$-pyridine: $\delta_{\mathrm{H}} \equiv 8.74,7.58,7.22 \mathrm{ppm}, \delta_{\mathrm{C}} \equiv 150.35$, 135.91, $123.87 \mathrm{ppm} ; \mathrm{D}_{3} \mathrm{COD}: \delta_{\mathrm{H}} \equiv 3.31 \mathrm{ppm}, \delta_{\mathrm{C}} \equiv 49.00 \mathrm{ppm}$). IR: Spectrum One (Perkin-Elmer) spectrometer, wavenumbers (\tilde{v}) in cm^{-1}. MS (EI): Finnigan MAT 8200 (70 eV), ESI-MS: ESQ 3000 (Bruker), accurate mass determinations: Bruker APEX III FT-MS (7 T magnet) or MAT 95 (Finnigan). Unless stated otherwise, all commercially available compounds (ABCR, Acros, Aldrich, Strem) were used as received. TeocCl, ${ }^{1}(E)$-1,1-dibromopenta-1,3-diene, ${ }^{2}$ and $\left[L A u N T f_{2}\right]^{3}$ ($L=\mathrm{PPh}_{3}$, SPhos, XPhos, SIPr) were prepared in analogy to literature procedures.

Gold Complexes

Representative Procedure for the Preparation of gem-Diaurated Complexes. Preparation of Complex 12a ($\mathrm{L}=\mathrm{PPh}_{3}$). [($\left.\left.\mathrm{Ph}_{3} \mathrm{P}\right) A u N T f_{2}\right](828 \mathrm{mg}, 1.12 \mathrm{mmol})$ was added to a solution of compound $\mathbf{1 0}$ (114 mg, $0.56 \mathrm{mmol})$ and $\mathrm{Cs}_{2} \mathrm{CO}_{3}(182 \mathrm{mg}, 0.56 \mathrm{mmol})$ in $\mathrm{THF}(5 \mathrm{~mL})$ and the resulting mixture was stirred at ambient temperature for 1 h . At this point, inspection of the reaction mixture by ${ }^{31} \mathrm{P}$ NMR showed the formation of a major product ($\delta_{\rho}=37.1 \mathrm{ppm}$, ca. 90%), together with small amounts of unreacted $\left[\left(\mathrm{Ph}_{3} \mathrm{P}\right) \mathrm{AuNTf}_{2}\right]\left(\delta_{\mathrm{P}}=31.0 \mathrm{ppm}\right.$, ca. 7%) and $\left[\left(\mathrm{Ph}_{3} \mathrm{P}\right)_{2} \mathrm{Au}\right]\left[\mathrm{NTf}_{2}\right]\left(\delta_{\mathrm{P}}=45.3 \mathrm{ppm}\right.$, ca. $\left.3 \%\right)$. For work up, all volatile materials were distilled off under vacuum (15 mbar) and the residue was passed through a short silica gel column (ca. $10 \mathrm{~cm}, \varnothing 2 \mathrm{~cm}$), eluting with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(200 \mathrm{~mL})$. The combined product-containing fractions were evaporated and the residue dried in vacuo to give complex 12a as a colorless oil (383 $\mathrm{mg})$, which contained trace impurities of $\left[\left(\mathrm{Ph}_{3} \mathrm{P}\right)_{2} \mathrm{Au}\right]\left[\mathrm{NTf}_{2}\right]$ and $\left(\mathrm{Ph}_{3} \mathrm{P}\right) \mathrm{AuCl}$ (likely formed by activation of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ during the work up, $\delta_{\mathrm{p}}=33.8 \mathrm{ppm}$). Crystals suitable for X-ray diffraction were grown by slowly

[^0]cooling a solution of the complex in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, layered with cold pentane, to $-78^{\circ} \mathrm{C} .{ }^{1} \mathrm{H} \mathrm{NMR}(400 \mathrm{MHz}$, $\left.\mathrm{CD}_{2} \mathrm{Cl}_{2}\right): \delta=7.70-7.33(\mathrm{~m}, 30-35 \mathrm{H}),{ }^{4} 7.30(\mathrm{~s}, 1 \mathrm{H}), 4.34(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 2.09(\mathrm{q}, J=1.5 \mathrm{~Hz}, 3 \mathrm{H}), 1.43(\mathrm{t}$, $J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$): $\delta=174.8\left(\mathrm{t},{ }^{3} \mathrm{~J}_{\mathrm{PC}}=2.4 \mathrm{~Hz}\right), 134.4\left(\mathrm{~d},{ }^{2} \mathrm{~J}_{\mathrm{PC}}=13.8 \mathrm{~Hz}\right), 132.5(\mathrm{~d}$, $\left.{ }^{4} J_{\mathrm{PC}}=2.6 \mathrm{~Hz}\right), 129.8\left(\mathrm{~d},{ }^{3} J_{\mathrm{PC}}=11.5 \mathrm{~Hz}\right), 129.3\left(\mathrm{~d}, J_{\mathrm{PC}}=56.7 \mathrm{~Hz}\right), 120.4\left(\mathrm{q}, J_{\mathrm{CF}}=322 \mathrm{~Hz}\right), 116.6\left(\mathrm{t}, J_{\mathrm{PC}}=60.6\right.$ Hz), 71.8, 20.3, 15.4; ${ }^{31} \mathrm{P}$ NMR ($162 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$): $\delta=37.5$; MS (ESI): m/z $1003\left(\mathrm{M}^{+}-\mathrm{NTf}_{2}\right) ; 721$ [($\left.\left.\mathrm{Ph}_{3} \mathrm{P}\right)_{2} \mathrm{Au}^{+}\right] ; 280\left(\mathrm{NTf}_{2}{ }^{-}\right)$; HRMS (ESI): m / z : calcd. for $\mathrm{C}_{41} \mathrm{H}_{39} \mathrm{Au}_{2} \mathrm{OP}_{2}\left[M^{+}\right]: 1003.1801$, found: 1003.1792.

The following complexes were prepared analogously:
Complex 12b ($L=X P h o s$): colorless solid ($142 \mathrm{mg}, 87 \%$); crystals suitable for X-ray diffraction were
 grown from $\mathrm{CH}_{2} \mathrm{Cl}_{2} /$ pentane; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$): $\delta=7.69-7.61(\mathrm{~m}, 2 \mathrm{H}), 7.54-$ $7.46(\mathrm{~m}, 4 \mathrm{H}), 7.05-6.99(\mathrm{~m}, 4 \mathrm{H}), 6.97(\mathrm{~d}, J=1.7 \mathrm{~Hz}, 2 \mathrm{H}), 6.24(\mathrm{~s}, 1 \mathrm{H}), 4.07(\mathrm{q}, J=7.1$ $\mathrm{Hz}, 2 \mathrm{H}$), 2.88 (sept., $J=6.9 \mathrm{~Hz}, 2 \mathrm{H}$), 2.39 (sept., $J=6.7 \mathrm{~Hz}, 4 \mathrm{H}$), 2.22 (sept., $J=6.7 \mathrm{~Hz}$, L = XPhos $\quad 2 \mathrm{H}), 2.20-1.63(\mathrm{~m}, 24 \mathrm{H}), 1.37(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}),[1.48-1.06(\mathrm{~m}), 1.31(\mathrm{~d}, J=6.9 \mathrm{~Hz})$, $1.28(\mathrm{~d}, J=6.9 \mathrm{~Hz}), 1.22(\mathrm{~d}, J=6.9 \mathrm{~Hz}), 1.17(\mathrm{~d}, J=6.9 \mathrm{~Hz}), 42 \mathrm{H}], 0.94(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 6 \mathrm{H}), 0.93(\mathrm{~m}, 3 \mathrm{H})$, $0.86(\mathrm{~d}, \mathrm{~J}=6.7 \mathrm{~Hz}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right): \delta=169.8\left(\mathrm{t},{ }^{3} \mathrm{~J}_{\mathrm{PC}}=1.8 \mathrm{~Hz}\right), 149.2,147.5\left(\mathrm{~d}, J_{\mathrm{PC}}=15.2\right.$ $\mathrm{Hz}), 147.0,146.8,136.4\left(\mathrm{~d}, J_{\mathrm{PC}}=5.4 \mathrm{~Hz}\right), 134.8\left(\mathrm{~d}, J_{\mathrm{PC}}=8.4 \mathrm{~Hz}\right), 133.6,131.2\left(\mathrm{~d}, J_{\mathrm{PC}}=2.2 \mathrm{~Hz}\right), 127.8\left(\mathrm{~d}, J_{\mathrm{PC}}\right.$ $=6.8 \mathrm{~Hz}), 126.8\left(\mathrm{~d}, J_{\mathrm{PC}}=45.8 \mathrm{~Hz}\right), 122.2,121.5,120.4\left(\mathrm{~d}, J_{\mathrm{CF}}=320 \mathrm{~Hz}\right), 117.2\left(\mathrm{t}, J_{\mathrm{PC}}=58.7 \mathrm{~Hz}\right), 70.6,38.4$ $\left(\mathrm{d}, J_{\mathrm{PC}}=28.8 \mathrm{~Hz}\right), 37.4\left(\mathrm{~d}, J_{\mathrm{PC}}=30.4 \mathrm{~Hz}\right), 34.2,31.6\left(\mathrm{~d}, J_{\mathrm{PC}}=3.9 \mathrm{~Hz}\right), 31.3,31.1,30.6,30.4,30.3,27.44(\mathrm{~d}$, $J_{\mathrm{PC}}=11.8 \mathrm{~Hz}$), $27.39\left(\mathrm{~d}, J_{\mathrm{PC}}=13.2 \mathrm{~Hz}\right), 27.01\left(\mathrm{~d}, J_{\mathrm{PC}}=12.5 \mathrm{~Hz}\right), 26.95\left(\mathrm{~d}, J_{\mathrm{PC}}=13.5 \mathrm{~Hz}\right), 26.4,26.2,25.4$, 25.3, 24.5, 23.8, 23.3, 22.9, 20.3, 15.4; ${ }^{31} \mathrm{P}$ NMR ($162 \mathrm{MHz} \mathrm{CD}{ }_{2} \mathrm{Cl}_{2}$): $\delta=38.7$; MS (ESI): $m / z 1431\left[\mathrm{M}^{+}-\right.$ NTf_{2}]; HRMS (ESI): m / z calcd for $\mathrm{C}_{71} \mathrm{H}_{107} \mathrm{Au}_{2} \mathrm{OP}_{2}\left[\mathrm{M}^{+}-\mathrm{NTf}_{2}\right]$: 1431.7123, found: 1431.7113;

Complex 12c ($\mathrm{L}=\mathrm{SIPr}$): pale yellow solid (141 mg (73\%); crystals suitable for X-ray diffraction were

$\mathrm{L}=\mathrm{SIPr}$ grown from $\mathrm{CH}_{2} \mathrm{Cl}_{2} /$ pentane; ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$): $\delta=7.38(\mathrm{t}, J=7.7 \mathrm{~Hz}, 4 \mathrm{H})$, $7.16(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 8 \mathrm{H}), 5.31(\mathrm{q}, J=1.4 \mathrm{~Hz}, 2 \mathrm{H}), 3.95(\mathrm{~s}, 8 \mathrm{H}), 3.54(\mathrm{q}, J=7.1 \mathrm{~Hz}, 1 \mathrm{H})$, [2.90 (sept., J = 6.9 Hz), 2.89 (sept., J = 6.9 Hz) 8H], 1.250 (d, J = $6.9 \mathrm{~Hz}, 12 \mathrm{H}$), 1.247 (d, J $=6.9 \mathrm{~Hz}, 12 \mathrm{H}), 1.06(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 12 \mathrm{H}), 1.05(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 1.03(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 12 \mathrm{H})$, $0.51(\mathrm{~d}, \mathrm{~J}=1.4 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(150 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right): \delta=206.4,170.1,146.99,146.92,134.6,130.0$, $124.78,124.73,120.3$ (q, $J_{C F}=322 \mathrm{~Hz}$), 103.9, 70.0, 54.1, 29.12, 29.02, 25.04, 24.97, 24.40, 24.15, 19.4, 15.3; MS (ESI): m/z $1259\left[\mathrm{M}^{+}-\mathrm{NTf}_{2}\right] ; 280$ [$\mathrm{NTf}_{2}{ }^{-}$]; HRMS (ESI): m / z : calcd. for $\mathrm{C}_{59} \mathrm{H}_{85} \mathrm{Au}_{2} \mathrm{~N}_{4} \mathrm{O}\left[\mathrm{M}^{+}-\mathrm{NTf}_{2}\right.$]: 1259.6049, found: 1259.6062.

Complex 14. A solution of boronate 13 ($227 \mathrm{mg}, 0.66 \mathrm{mmol}$), ${ }^{5} \mathrm{Cs}_{2} \mathrm{CO}_{3}$ ($215 \mathrm{mg}, 0.66 \mathrm{mmol}$) and
 $\left(\mathrm{Ph}_{3} \mathrm{P}\right) \mathrm{AuNTf}_{2}(488 \mathrm{mg}, 0.66 \mathrm{mmol})$ in THF (3 mL) was stirred for 2 h before all volatile materials were evaporated. The residue was suspended in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \mathrm{~mL})$, insoluble materials were filtered off and the filtrate was evaporated. The residue was suspended in pentane (10 mL) and the suspension stirred for 1 h . Insoluble materials were filtered off, the filtrate was evaporated and the residue dried in vacuo ($10^{-3} \mathrm{mbar}$) to give the title complex as a colorless solid material ($357 \mathrm{mg}, 80 \%$); ${ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right): \delta=8.10(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.75(\mathrm{~d}, \mathrm{~J}=$ $7.4 \mathrm{~Hz}, 1 \mathrm{H}),[7.69-7.6(\mathrm{~m}), 7.6-7.47(\mathrm{~m}) ; 15 \mathrm{H}], 7.40(\mathrm{~s}, 1 \mathrm{H}), 7.22-7.11(\mathrm{~m}, 2 \mathrm{H}), 1.65(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right): \delta=150.3,145.5(\mathrm{br}), 141.3,136.5,134.7\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{PC}}=13.8 \mathrm{~Hz}\right), 133.1,131.8\left(\mathrm{~d}, J_{\mathrm{PC}}=2.2\right.$

[^1]$\mathrm{Hz}), 131.1\left(\mathrm{~d}, J_{\mathrm{PC}}=51.6 \mathrm{~Hz}\right), 129.6\left(\mathrm{~d}, J_{\mathrm{PC}}=11 \mathrm{~Hz}\right), 124.6,123.5,121.9,115.1,82.8,28.4 ;{ }^{31} \mathrm{P}$ NMR (162 $\mathrm{MHz} \mathrm{CD}_{2} \mathrm{Cl}_{2}$): $\delta=45.7$; MS (EI): m/z 619 (≤ 1), 459 (4), 432 (6), 320 (34), 276 (21), 262 (100), 232 (20), 183 (65), 108 (28), 57 (43).

Complex 15. A solution of complex 14 (184 mg, 0.27 mmol$)$ and $\left(\mathrm{Ph}_{3} \mathrm{P}\right) A u N T f_{2}(201 \mathrm{mg}, 0.27 \mathrm{mmol})$ in
 $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \mathrm{~mL})$ was stirred for 1 h . The mixture was filtered through a short plug of Celite and the filtrate was evaporated to give the title complex as a colorless solid material ($357 \mathrm{mg}, 93 \%$). ${ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right.$): $\delta=8.56(\mathrm{~s}, 1 \mathrm{H}), 8.29$ ($\mathrm{d}, \mathrm{J}=8.2$ $\mathrm{Hz}, 1 \mathrm{H}), 7.90(\mathrm{~d}, \mathrm{~J}=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.8-7.3(\mathrm{~m}, 32 \mathrm{H}), 1.74(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz , $\mathrm{CD}_{2} \mathrm{Cl}_{2},-50^{\circ} \mathrm{C}$): $\delta=153.1$ (br), 147.9 (br), 141.9 (br), 136.7 (br), 133.8 (d, $J_{\mathrm{PC}}=13.8$ $\mathrm{Hz}), 132.1\left(\mathrm{~d}, J_{\mathrm{PC}}=2.3 \mathrm{~Hz}\right), 129.4\left(\mathrm{~d}, J_{\mathrm{PC}}=11.6 \mathrm{~Hz}\right), 128.0\left(\mathrm{~d}, J_{\mathrm{PC}}=58.5 \mathrm{~Hz}\right), 125.8,124.0,123.8,119.5(\mathrm{q}$, $J_{\text {CF }}=320 \mathrm{~Hz}$), $116.3\left(\mathrm{t}, J_{\mathrm{PC}}=62.3 \mathrm{~Hz}\right), 115.8 ;{ }^{31} \mathrm{P}$ NMR ($162 \mathrm{MHz} \mathrm{CD}{ }_{2} \mathrm{Cl}_{2}$): $\delta=38.1 ; \mathrm{MS}(E S I): m / z 1134\left[\mathrm{M}^{+}-\right.$ NTf_{2}]; HRMS (ESI): m / z : calcd. for $\mathrm{C}_{49} \mathrm{H}_{44} \mathrm{Au}_{2} \mathrm{NO}_{2} \mathrm{P}_{2}\left[\mathrm{M}^{+}-\mathrm{NTf}_{2}\right]$: 1134.2173, found 1134.2182; Crystals suitable for X-ray diffraction were grown from $\mathrm{CH}_{2} \mathrm{Cl}_{2} /$ pentane.

Preparation of 4-Hydroxy-2-Pyrones

Representative Procedure for the Preparation of a Cyclization Precursor by Claisen Condensation: tert-

Butyl 2-Hex-3-oxodec-4-ynoate. t-Butyl octanoate ($1.0 \mathrm{~g}, 0.5 \mathrm{mmol}$) was added dropwise to a stirred solution of LDA (0.5 M in THF, $10 \mathrm{~mL}, 5 \mathrm{mmol}$) at $-78{ }^{\circ} \mathrm{C}$. The mixture was stirred at this temperature for 30 min before methyl 2octynoate ($771 \mathrm{mg}, 0.5 \mathrm{mmol}$) was slowly introduced and stirring continued at $-78^{\circ} \mathrm{C}$ for 2 h . The mixture was poured into aq. sat. $\mathrm{NH}_{4} \mathrm{Cl}(50 \mathrm{~mL})$ and the organic phase extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 50 \mathrm{~mL})$, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated. Flash chromatography of the residue (hexanes/EtOAc, 99:1 \rightarrow 95:5) gave the title compound as a colorless oil ($1.34 \mathrm{~g}, 83 \%$). ${ }^{1} \mathrm{H}$ NMR (400 $\mathrm{MHz}, \mathrm{CDCl}_{3}$, mixture of keto/enol tautomers): $\delta=0.85-0.93(\mathrm{~m}, 6 \mathrm{H}), 1.23-1.43(\mathrm{~m}, 12 \mathrm{H}), 1.46 \& 1.50(\mathrm{~s}$ each, $\Sigma 9 \mathrm{H}$), 1.53-1.62 (m, 2H), 1.80-1.93 (m, 1H), 2.22-2.29 (m, 1H), $2.36(\mathrm{t}, \mathrm{J}=7.1,1 \mathrm{H}), 2.40(\mathrm{t}, J=7.1$, $1 \mathrm{H}), 3.33(\mathrm{t}, \mathrm{J}=7.4 \mathrm{~Hz}, 0.5 \mathrm{H}), 12.33(\mathrm{~s}, 0.5 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=13.8,13.9,14.0,14.0,19.0$, 19.4, 22.0, 22.1, 22.5, 22.6, 27.0, 17.3, 27.8, 27.8, 27.9, 28.1, 28.2, 28.9, 29.0, 29.6, 30.9, 31.0, 31.5, 31.6, 61.9, 75.0, 79.6, 81.6, 81.7, 96.3, 99.2, 109.4, 152.3, 168.2, 172.8, 183.3. IR (film): $\tilde{v}=2957,2929,2859$, 2214, 1736, 1677, 1633, 1598, 1457, 1369, 1358, 1250, 1150, 1128, 845, $820 \mathrm{~cm}^{-1}$; MS (EI): m/z (\%) 322 (4), 266 (45), 249 (15), 238 (5), 223 (23), 210 (13), 195 (23), 177 (20), 139 (11), 123 (95), 98 (71), 82 (9), 67 (23), 57 (100), 41 (38); HRMS (EI): m/z: calcd for $\mathrm{C}_{20} \mathrm{H}_{34} \mathrm{O}_{3} \mathrm{Na}\left[\mathrm{M}+\mathrm{Na}^{+}\right]: 345.24001$, found: 345.23988.

Representative Procedure for the Preparation of 4-Hydroxy-2-pyrones. Synthesis of Pseudopyronine
 A. A solution of tert-butyl 2-hex-3-oxodec-4-ynoate ($325 \mathrm{mg}, 1.0 \mathrm{mmol}$) and [SPhosAuNTf ${ }_{2}$ ($9 \mathrm{mg}, 10 \mu \mathrm{~mol}, 1 \mathrm{~mol} \%$) in HOAc (5 mL) was stirred for 24 h before the acid was distilled off and the residue purified by flash chromatography (hexane/HOAc, 4:1) to afford pseudopyronine A as a white solid ($257 \mathrm{mg}, 96 \%$). $\mathrm{Mp}=111.5-112.5^{\circ} \mathrm{C}$ (lit. $\left.106-108{ }^{\circ} \mathrm{C}\right) .{ }^{61} \mathrm{H} \mathrm{NMR}(400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right): \delta=0.86-0.93(\mathrm{~m}, 6 \mathrm{H}), 1.24-1.38(\mathrm{~m}, 10 \mathrm{H}), 1.44-1.54(\mathrm{~m}, 2 \mathrm{H}), 1.58-1.68(\mathrm{~m}, 2 \mathrm{H}), 2.40-2.48(\mathrm{~m}$,

[^2]4H), $6.20(\mathrm{~s}, 1 \mathrm{H}), 10.19(\mathrm{br} \mathrm{s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=13.9,14.1,22.3,22.7,23.1,26.5,28.0$, $29.3,31.1,31.8,33.5,100.9,103.4,163.6,167.2,168.4 ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$): $\delta=0.89(\mathrm{t}, \mathrm{J}=7.0$ $\mathrm{Hz}, 3 \mathrm{H}), 0.92(\mathrm{t}, \mathrm{J}=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 1.32-1.40(\mathrm{~m}, 10 \mathrm{H}), 1.40-1.50(\mathrm{~m}, 2 \mathrm{H}), 1.60-1.70(\mathrm{~m}, 2 \mathrm{H}), 2.37(\mathrm{t}, \mathrm{J}=7.5$ $\mathrm{Hz}, 2 \mathrm{H}), 2.46(\mathrm{t}, \mathrm{J}=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 4.89(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 5.98(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{CNMR}\left(100 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right): \delta=14.2,14.4$, $23.4,23.7,23.9,27.6,29.0,30.2,32.2,32.9,34.2,101.0,103.9,165.1,167.7,168.8$; IR (film): $\tilde{v}=2955$, 2926, 2872. 2858, 2643, 1663, 1630, 1556, 1433, 1407, 1292, 1256, 1172, 1130, 992, 856, $758 \mathrm{~cm}^{-1}$; MS (EI): m/z (\%) 266 (17), 249 (3), 237 (3), 223 (11), 209 (14), 195 (100), 182 (9), 168 (19), 153 (10), 140 (15), 126 (11), 111 (7), 99 (11), 83 (4), 69 (10), 55 (21), 43 (21); HRMS (ESI-): m/z: calcd for $\mathrm{C}_{16} \mathrm{H}_{25} \mathrm{O}_{3}[\mathrm{M}-\mathrm{H}]^{-}$: 265.18092, found: 265.18085.

compare: Yoshii, E.; Mori, M. US Patent 6232 335, 2001

Figure S1. Analysis of the ${ }^{1} \mathrm{H}$ NMR data of two representative products formed by gold catalyzed 6-endo-dig cyclization; the comparison with the known data for the corresponding tetronic acids (5-exo products) corroborates the structure assignment.

Prepared analogously as colorless crystals ($655 \mathrm{mg}, 94 \%$); after washing with $\mathrm{Et}_{2} \mathrm{O}$, the material was found analytically pure, thus requiring no flash chromatography. $\mathrm{Mp}=106-$ $107{ }^{\circ} \mathrm{C}$ (lit: ${ }^{. \mathrm{a}} 83{ }^{\circ} \mathrm{C}$); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=11.33(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 6.02(\mathrm{dt}, J=2.0,1.0 \mathrm{~Hz}$, $1 \mathrm{H}), 5.59(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.52(\mathrm{q}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 1.20(\mathrm{t}, J=7.5 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{CNMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta$ $=172.9(\mathrm{C}), 168.5(\mathrm{C}), 168.3(\mathrm{C}), 100.6(\mathrm{CH}), 89.7(\mathrm{CH}), 26.8\left(\mathrm{CH}_{2}\right), 10.8\left(\mathrm{CH}_{3}\right)$; IR (film): $\tilde{v}=2984,2950$, 2566, 1650, 1614, 1574, 1543, 1446, 1383, 1366, 1311, 1283, 1266, 1242, 1203, 1139, 937, 883, 835, 808, 782, 693, $661 \mathrm{~cm}^{-1}$; MS (EI): m/z (\%): 140 (37) [$\left.M^{+}\right], 111$ (70), 99 (16), 69 (100), 57 (26), 29 (24); HRMS (EI): m / z : calcd for $\mathrm{C}_{7} \mathrm{H}_{8} \mathrm{O}_{3}\left[M^{+}\right]$: 140.0473, found: 140.0472. The spectroscopic data are in good agreement with the data reported in the literature. ${ }^{7}$

Prepared analogously as a white solid ($14.9 \mathrm{mg}, 97 \%$); after washing with $\mathrm{Et}_{2} \mathrm{O}$, the material was found analytically pure, thus requiring no flash chromatography. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz},\left[\mathrm{D}_{6}\right]$-DMSO): $\delta=11.08$ (br s, 1H), 5.96 (br s, 1H), $2.43(\mathrm{q}, \mathrm{J}=7.5 \mathrm{~Hz}, 2 \mathrm{H}$), $1.74(\mathrm{~s}$,

[^3]3H), 1.09 (t, J=7.5 Hz, 3H); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz},\left[\mathrm{D}_{6}\right]$-DMSO): $\delta=165.0$ (C), 164.9 (C), 163.8 (C), 98.2 (CH), 96.5 (C), $25.9\left(\mathrm{CH}_{2}\right), 10.9\left(\mathrm{CH}_{3}\right), 8.3\left(\mathrm{CH}_{3}\right)$ IR (film): $\tilde{v}=2984,2967,2914,2690,1671,1634,1574,1508$, 1428, 1399, 1373, 1353, 1315, 1238, 1180, 1122, 1088, 1056, 1020, 947, 930, 845, 831, 752, 743, 667 cm^{-1}; MS (EI): m/z (\%): 154 (88) [M+], 126 (79), 111 (100), 99 (59), 83 (14), 69 (94); HRMS (EI): m/z: calcd for $\mathrm{C}_{8} \mathrm{H}_{10} \mathrm{O}_{3}\left[M^{+}\right]: 154.0630$, found: 154.0631 .

Prepared analogously as a white solid (18.7 mg , 99\%); after washing with $\mathrm{Et}_{2} \mathrm{O}$, the material was found analytically pure, thus requiring no flash chromatography. ${ }^{1} \mathrm{H} N M R(400 \mathrm{MHz}$,
[D6]-DMSO): $\delta=11.85(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 7.84(\mathrm{~m}, 2 \mathrm{H}), 7.51(\mathrm{~m}, 3 \mathrm{H}), 6.75(\mathrm{~d}, \mathrm{~J}=1.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.40(\mathrm{~d}$, $J=1.9 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz},\left[\mathrm{D}_{6}\right]$-DMSO): $\delta=170.5$ (C), 163.0 (C), 160.1 (C), 131.1 (C), 130.9 (CH), $129.1(2 \times \mathrm{CH}), 125.5(2 \times \mathrm{CH}), 98.4(\mathrm{CH}), 89.6(\mathrm{CH})$. The analytical data matched those reported in the literature. ${ }^{7,8}$

Prepared analogously as a white solid ($18.6 \mathrm{mg}, 82 \%$); after washing with $\mathrm{Et}_{2} \mathrm{O}$, the material was found analytically pure, thus requiring no flash chromatography. $\mathrm{Mp}=187$ $195{ }^{\circ} \mathrm{C}$ (decomp.); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz},\left[\mathrm{D}_{6}\right]$-DMSO): $\delta=1.11(\mathrm{t}, \mathrm{J}=7.5 \mathrm{~Hz}, 3 \mathrm{H}), 2.48(\mathrm{dq}, \mathrm{J}=$ $7.5,0.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.08(\mathrm{t}, \mathrm{J}=0.8 \mathrm{~Hz}, 1 \mathrm{H}), 12.53(\mathrm{br} \mathrm{s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.100 \mathrm{MHz},\left[\mathrm{D}_{6}\right]-\mathrm{DMSO}\right): \delta=10.7,25.7$, 84.9, 98.2, 160.4, 165.8, 166.7; IR (film): $\tilde{v}=3082,1656,1565,1428,1411,1380,1326,1222,1157$, 1048, $971,943,844,791,773,741,683758 \mathrm{~cm}^{-1} ; \mathrm{MS}$ (EI): m / z (\%) 220 (96), 218 (97), 192 (53), 190 (57), 177 (15), 175 (16), 163 (21), 161 (22), 135 (36), 133 (35), 122 (12), 120 (11), 111 (8), 99 (100), 83 (11), 69 (25), 57 (30), 53 (29), 39 (12), 29 (27); HRMS (EI): m/z: calcd for $\mathrm{C}_{7} \mathrm{H}_{6} \mathrm{O}_{3} \mathrm{Br}\left[\mathrm{M}+\mathrm{Na}^{+}\right]$: 216.95059, found: 216.95071.

Prepared analogously as a white solid ($17.5 \mathrm{mg}, 85 \%$); after washing with $\mathrm{Et}_{2} \mathrm{O}$, the material was found analytically pure, thus requiring no flash chromatography. ${ }^{1} \mathrm{H} N \mathrm{NR}(400 \mathrm{MHz}$, [D_{6}]-DMSO): $\delta=12.38(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 7.78(\mathrm{~m}, 2 \mathrm{H}), 7.51(\mathrm{~m}, 3 \mathrm{H}), 6.83(\mathrm{~d}, \mathrm{~J}=5.3 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz},\left[\mathrm{D}_{6}\right]$-DMSO): $\delta=157.1\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{CF}}=23.7 \mathrm{~Hz}, \mathrm{C}\right), 154.9\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{CF}}=6.0 \mathrm{~Hz}, \mathrm{C}\right), 153.8\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{CF}}=9.2 \mathrm{~Hz}\right.$, C), 133.0 (C), 130.7 (CH), 130.4 (C), $129.1(2 \times \mathrm{CH}), 125.3(2 \times \mathrm{CH})$, 98.9 (CH), IR (film): $\tilde{v}=2885,2641$, 2587, 2551, 1625, 1577, 1549, 1495, 1453, 1399, 1356, 1174, 1071, 1048, 910, 859, 824, 770, 734, 685, $658 \mathrm{~cm}^{-1}$; MS (EI): m/z (\%): 206 (100) [M+], 178 (27), 149 (21), 130 (18), 105 (42), 77 (53), 51 (27); HRMS (ESI+): m / z : calcd for $\mathrm{C}_{11} \mathrm{H}_{7} \mathrm{O}_{3} \mathrm{FNa}\left[\mathrm{M}^{+}+\mathrm{Na}\right]$: 229.0271, found: 229.0274. Prepared analogously as a white solid ($8.3 \mathrm{mg}, 45 \%) . \mathrm{Mp}=116-118{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H} \mathrm{NMR}(400 \mathrm{MHz}$,
$\left.\mathrm{CDCl}_{3}\right): \delta=0.27(\mathrm{~s}, 9 \mathrm{H}), 5.66(\mathrm{~d}, J=2.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.36(\mathrm{~d}, J=2.3 \mathrm{~Hz}, 1 \mathrm{H}), 11.00(\mathrm{br} \mathrm{s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=-2.9,92.5,112.1,169.7,170.1,175.1 ; \mathrm{IR}$ (film): $\tilde{v}=3133$, $2961,1681,1650,1631,1571,1421,1283,1243,1222,1188,1088,988,921,869,839,826,702 \mathrm{~cm}^{-1}$; MS (EI): m/z (\%) 184 (22), 169 (81), 156 (2), 143 (10), 127 (6), 111 (6), 99 (20), 83 (8), 73 (100), 69 (21), 66 (3), 55 (4), 45 (16), 29 (3); HRMS (EI): m / z : calcd for $\mathrm{C}_{8} \mathrm{H}_{12} \mathrm{O}_{3} \mathrm{Si}\left[\mathrm{M}+\mathrm{Na}^{+}\right]: 184.05558$, found: 184.05542.

Prepared analogously as a yellow oil (mixture of diastereoisomers, $69 \mathrm{mg}, 83 \%$). $[\alpha]_{\mathrm{D}}^{20}:-9.4\left(\mathrm{c}=1, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=10.09(\mathrm{bs}, 1 \mathrm{H}), 5.90(\mathrm{~d}, \mathrm{~J}=$ $1.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.41(\mathrm{~d}, \mathrm{~J}=1.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.57-4.50(\mathrm{~m}, 1 \mathrm{H}), 3.88-3.77(\mathrm{~m}, 1 \mathrm{H}), 3.75-$ $3.65(\mathrm{~m}, 1 \mathrm{H}), 3.51-3.43(\mathrm{~m}, 1 \mathrm{H}), 3.39-3.13(\mathrm{~m}, 1 \mathrm{H}), 2.60-2.50(\mathrm{~m}, 1 \mathrm{H}), 1.83-$ $1.43(\mathrm{~m}, 10 \mathrm{H}), 1.20(\mathrm{~d}, \mathrm{~J}=7.1 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=170.2,170.7,167.8,100.3,99.32$, $99.31,90.0,67.50,67.45,62.78,62.75,38.4,38.3,31.14,31.09,30.8,27.5,27.4,25.5,19.8,18.4$; IR

[^4](film): $\tilde{v}=2941,2870,1665,1567,1439,1367,1258,1057,1022 \mathrm{~cm}^{-1}$. HRMS (ESI): $m / z:$ calcd. for $\mathrm{C}_{15} \mathrm{H}_{22} \mathrm{O}_{5} \mathrm{Na}\left[\mathrm{M}^{+}+\mathrm{Na}\right]: 305.13600$, found 305.13594.

The Trimethylsilylethyl 3-Oxoalkanoate Series

2-(Trimethylsilyl)ethyl acetate. ${ }^{9}$ 2-Trimethylsilyl-ethanol ($7.5 \mathrm{~mL}, 52.33 \mathrm{mmol}$) was added dropwise to a (1) solution of $\mathrm{Mg}\left(\mathrm{ClO}_{4}\right)_{2}(117 \mathrm{mg}, 0.52 \mathrm{mmol})$ in $\mathrm{Ac}_{2} \mathrm{O}(5.0 \mathrm{~mL}, 52.90 \mathrm{mmol})$ and the resulting mixture was stirred for 4 h . The reaction was quenched with sat. aq. NaHCO_{3} and the aqueous layer extracted with tert-butyl methyl ether. The combined extracts were washed twice with sat. aq. NaHCO_{3}, dried over MgSO_{4}, and evaporated to give the title compound as a colorless liquid which was pure enough for further use ($7.67 \mathrm{~g}, 91 \%$). ${ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=$ $4.20-4.10(\mathrm{~m}, 2 \mathrm{H}), 2.03(\mathrm{~s}, 3 \mathrm{H}), 1.01-0.95(\mathrm{~m}, 2 \mathrm{H}), 0.04(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathrm{CNMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=171.5$, 62.8, 21.4, 17.4, -1.4. IR (film): $\tilde{v}=2254,1730,1251,903 \mathrm{~cm}^{-1}$. HRMS (ESI): m/z: calcd. for $\mathrm{C}_{7} \mathrm{H}_{16} \mathrm{O}_{2} \mathrm{SiNa}^{+}$: 183.08127; found: 183.08118 .

2-(Trimethylsilyl)ethyl propionate. Prepared analogously from propionic anhydride ($5.0 \mathrm{~mL}, 39.07$
 $(\mathrm{m}, 2 \mathrm{H}), 2.29(\mathrm{q}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 1.12(\mathrm{t}, J=7.6 \mathrm{~Hz}, 3 \mathrm{H}), 1.00-0.94(\mathrm{~m}, 2 \mathrm{H}), 0.00(\mathrm{~s}$, $9 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=174.8,62.6,27.9,17.4,9.3,-1.4$. IR (film): $\tilde{v}=2254,1725,1251$, 1180, $903 \mathrm{~cm}^{-1}$. HRMS (ESI): m/z: calcd. for $\mathrm{C}_{8} \mathrm{H}_{18} \mathrm{O}_{2} \mathrm{SiNa}^{+}$: 197.09690; found: 197.09683.

2-(Trimethylsilyl)ethyl 2-methyl-3-oxohex-4-ynoate. nBuLi (1.6 M in hexanes, $3.6 \mathrm{~mL}, 5.76 \mathrm{mmol}$) was added dropwise to a solution of $i \mathrm{Pr}_{2} \mathrm{NH}(1.0 \mathrm{~mL}, 7.14 \mathrm{mmol})$ in THF (11.5 mL) at
 $0^{\circ} \mathrm{C}$. The mixture was stirred for 15 min at $0^{\circ} \mathrm{C}$ before it was cooled to $-78^{\circ} \mathrm{C}$. 2-(Trimethylsilyl)ethyl propionate ($1.0 \mathrm{~g}, 5.74 \mathrm{mmol}$) was added dropwise and stirring continued at $-78^{\circ} \mathrm{C}$ for 30 min before ethyl-2-butynoate ($0.5 \mathrm{~mL}, 4.23 \mathrm{mmol}$) was slowly added. After stirring at this temperature for 3 h , the reaction was quenched with sat. aq. $\mathrm{NH}_{4} \mathrm{Cl}$ and the aqueous layer extracted with tert-butyl methyl ether. The extracts were washed with brine and dried over MgSO_{4}. The drying agent was filtered off and the solvent was evaporated. Purification of the residue by flash chromatography (hexanes/EtOAc, 20:1) gave the title compound as a colorless liquid ($942 \mathrm{mg}, 91 \%$). ${ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$, mixture of keto/enol tautomers): $\delta=12.18$ (s, 0.8 H , enol); 4.32 - 4.20 ($\mathrm{m}, 2 \mathrm{H}$, ketone+enol); 3.52 ($\mathrm{q}, \mathrm{J}=7.2 \mathrm{~Hz}, 0.2 \mathrm{H}$, ketone); 2.08 (s, 2.4 H , enol); 2.04 (s, 0.5 H , ketone); 1.87 (s, 2.4 H, enol); 1.41 (d, J = $7.1 \mathrm{~Hz}, 0.5 \mathrm{H}$, ketone); $1.09-0.96$ (m, 2H, ketone+enol); 0.05 (s, 7 H , enol); 0.04 (s, 1.8 H , ketone). ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$, mixture of keto/enol tautomers): $\delta=183.3$ (ketone), 173.5 (enol), 170.0 (ketone), 152.3 (enol), 103.3 (enol), 95.9 (enol), 92.9 (ketone), 78.9 (ketone), 74.3 (enol), 64.0 (ketone), 63.3 (enol), 55.0 (ketone), 17.41 (enol), 17.35 (ketone), 13.1 (enol), 13.0 (ketone), 4.7 (enol), 4.4 (ketone), -1.36 (enol), -1.41 (ketone). IR (film): $\tilde{v}=2254,1638,1603,1392$, 1335, 1253, 1161, 1120, $903 \mathrm{~cm}^{-1}$. HRMS (ESI): m / z : calcd. for $\mathrm{C}_{12} \mathrm{H}_{20} \mathrm{O}_{3} \mathrm{SiNa}^{+}$: 263.10742; found: 263.10739 .

[^5]2-(Trimethylsilyl)ethyl 2-methyl-3-oxo-5-phenylpent-4-ynoate. Prepared analogously as a colorless
 liquid ($627 \mathrm{mg}, 96 \%$). ${ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$, mixture of keto/enol tautomers): $\delta=13.47$ (s, 0.9 H , enol); $7.64-7.46$ (m, 2 H , ketone+enol); 7.46 $7.27(\mathrm{~m}, 3 \mathrm{H}$, ketone+enol); 4.35-4.24(m,2H, ketone+enol); $3.66(\mathrm{q}, \mathrm{J}=7.3$ $\mathrm{Hz}, 0.1 \mathrm{H}$, ketone); 2.00 (s, 2.7 H , enol); 1.50 (d, J = $7.3 \mathrm{~Hz}, 0.3 \mathrm{H}$, ketone); $1.11-1.03$ (m, 2H, ketone+enol); 0.07 (s, 8 H , enol); 0.02 (s, 1 H , ketone). ${ }^{13} \mathrm{C} \mathrm{NMR} \mathrm{(} 101 \mathrm{MHz}, \mathrm{CDCl}_{3}$, enol form): $\delta=173.3$, 152.0, 132.1, 129.8, 128.6, 121.4, 104.5, 97.8, 83.1, 63.5, 17.5, 13.4, -1.3. IR (film): $\tilde{v}=2954,2215,1738$, 1638, 1605, 1591, 1390, 1336, 1278, 1190, $1060 \mathrm{~cm}^{-1}$. HRMS (ESI): m/z: calcd. for $\mathrm{C}_{17} \mathrm{H}_{22} \mathrm{O}_{3} \mathrm{SiNa}^{+}$: 325.123010; found: 325.123043.
(2R,3S,4R)-3,4-bis(Benzyloxy)-2-((benzyloxy)methyl)-3,4-dihydro-2H-pyran-5-carbaldehyde
 $\mathrm{POCl}_{3}(2.45 \mathrm{~mL}, 26.16 \mathrm{mmol})$ was added dropwise over 1 h to a solution of tri-O-benzyl-D-glucal ($1.00 \mathrm{~g}, 2.4 \mathrm{mmol}$) in DMF (4 mL) at $0^{\circ} \mathrm{C}$. The mixture was stirred for 24 h while slowly warming to room temperature. The reaction was quenched with sat. aq. NaHCO_{3} and the aqueous layer was extracted with tert-butyl methyl ether. The combined extracts were washed with brine and dried over MgSO_{4}, the drying agent was filtered off and the solvent was evaporated. Purification of the residue by flash chromatography (hexanes/EtOAc, 5:1) afforded the title compound ($807 \mathrm{mg}, 76 \%$). $[\alpha]_{\mathrm{D}}^{20}:+2.1$ (c $=1, \mathrm{CHCl}_{3} ; \mathrm{Lit}^{10}{ }^{10}[\alpha]_{\mathrm{D}}^{25}:+6.8, \mathrm{c}=0.34$, $\left.\mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=9.41(\mathrm{~s}, 1 \mathrm{H}), 7.42-7.20(\mathrm{~m}, 15 \mathrm{H}), 4.77-4.71(\mathrm{~m}, 1 \mathrm{H}), 4.71-4.44$ $(\mathrm{m}, 7 \mathrm{H}), 4.42(\mathrm{t}, J=2.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.84(\mathrm{t}, \mathrm{J}=2.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.80(\mathrm{dd}, J=10.9,7.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.63(\mathrm{dd}, 10.7,4.7$ $\mathrm{Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl_{3}): $\delta=190.5,164.4,138.3,137.8,137.3,128.7,128.6,128.5,128.2$, $128.0,127.93,127.87,127.8,117.9,79.5,73.5,72.6,71.8,71.5,68.5,65.4$. IR (film): $\tilde{v}=3064,3031$, 2866, 1673, 1626, 1454, 1294, 1199, 1089, $1072 \mathrm{~cm}^{-1}$. HRMS (ESI): m/z: calcd. for $\mathrm{C}_{28} \mathrm{H}_{28} \mathrm{O}_{5} \mathrm{Na}^{+}: 467.18306$; found: 467.18289 .
(2R,3S,4R)-3,4-bis(Benzyloxy)-2-((benzyloxy)methyl)-3,4-dihydro-2H-pyran-5-carboxylic acid (S-2).

$\mathrm{NaH}_{2} \mathrm{PO}_{4}(5.60 \mathrm{~g}, 46.68 \mathrm{mmol})$ and $\mathrm{H}_{2} \mathrm{O}_{2}\left(7.5 \mathrm{~mL}, 77.17 \mathrm{mmol}, 35 \%\right.$ in $\left.\mathrm{H}_{2} \mathrm{O}\right)$ were added to a solution of $\mathrm{S}-1(6.45 \mathrm{~g}, 15.49 \mathrm{mmol})$ in $\mathrm{CH}_{3} \mathrm{CN} / t \mathrm{BuOH} / \mathrm{H}_{2} \mathrm{O}(2: 2: 1,70 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$. The mixture was stirred for 5 min before $\mathrm{NaClO}_{2}(8.4 \mathrm{~g}, 92.88 \mathrm{mmol})$ was added. Stirring was then continued for 16 h at room temperature before the mixture was diluted with water and the aqueous phase was extracted with tert-butyl methyl ether. The combined extracts were washed with brine and dried over MgSO_{4}. The drying agent was filtered off and the solvent was evaporated. Purification of the residue by flash chromatography (hexanes/EtOAc, 5:1) afforded the title compound ($5.60 \mathrm{~g}, 79 \%$). $[\alpha]_{\mathrm{D}}^{20}$: $-4.2\left(\mathrm{c}=1, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.79$ $(\mathrm{s}, 1 \mathrm{H}), 7.39-7.21(\mathrm{~m}, 15 \mathrm{H}), 4.72-4.63(\mathrm{~m}, 2 \mathrm{H}), 4.59-4.49(\mathrm{~m}, 4 \mathrm{H}), 4.44(\mathrm{~d}, \mathrm{~J}=12.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.34(\mathrm{t}, \mathrm{J}=$ $2.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.82(\mathrm{t}, J=2.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.78(\mathrm{dd}, J=10.7,7.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.62(\mathrm{dd}, J=10.7,4.9 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=172.9,157.6,138.3,137.8,137.5,128.7,128.6,128.5,128.15,128.11,127.91$, 127.88, 127.85, 127.1, 104.7, 77.5, 73.5, 72.4, 71.6, 71.4, 68.4, 67.8. IR (film): $\tilde{v}=3063,3030,2863$, 1647, 1453, 1362, 1238, 1097, 1069, 1047, $1027 \mathrm{~cm}^{-1}$. HRMS (ESI): $m / z:$ calcd. for $\mathrm{C}_{28} \mathrm{H}_{28} \mathrm{O}_{6} \mathrm{Na}^{+}: 483.17805$; found: 483.17781 .

[^6]2-(Trimethylsilyl)ethyl (2R,3S,4R)-3,4-bis(benzyloxy)-2-((benzyloxy)methyl)-3,4-dihydro-2H-pyran-5carboxylate (S-3). DEAD ($6.70 \mathrm{~mL}, 36.77 \mathrm{mmol}$) was added dropwise over 60 min to a solution of compound $\quad \mathbf{S - 2}(5.60 \mathrm{~g}, \quad 12.15 \mathrm{mmol}), \quad 2-(\mathrm{TMS})$-ethanol (4.5 mL , $31.39 \mathrm{mmol})$ and $\mathrm{PPh}_{3}(11.50 \mathrm{~g}, 43.84 \mathrm{mmol})$ in THF $(60 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$. After stirring for 16 h at room temperature, the reaction was quenched with sat. aq. $\mathrm{NH}_{4} \mathrm{Cl}$ and the aqueous phase extracted with tert-butyl methyl ether. The combined extracts were washed with brine and dried over MgSO_{4}. The drying agent was filtered off and the solvent was evaporated. Purification of the residue by flash chromatography (hexanes/EtOAc, 10:1) afforded the title compound ($5.25 \mathrm{~g}, 77 \%$). $[\alpha]_{\mathrm{D}}^{20}$: $-15.8\left(\mathrm{c}=1, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.65(\mathrm{~s}, 1 \mathrm{H}), 7.39$ $-7.20(\mathrm{~m}, 15 \mathrm{H}), 4.65(\mathrm{~d}, \mathrm{~J}=11.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.64-4.59(\mathrm{~m}, 1 \mathrm{H}), 4.58-4.47(\mathrm{~m}, 4 \mathrm{H}), 4.43(\mathrm{~d}, \mathrm{~J}=11.9 \mathrm{~Hz}$, $1 \mathrm{H}), 4.35(\mathrm{t}, J=2.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.29-4.21(\mathrm{~m}, 2 \mathrm{H}), 3.80(\mathrm{t}, J=2.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.76(\mathrm{dd}, J=10.6,7.6 \mathrm{~Hz}, 1 \mathrm{H})$, 3.61 (dd, $J=10.7,4.9 \mathrm{~Hz}, 1 \mathrm{H}$), $1.06-0.98(\mathrm{~m}, 2 \mathrm{H}), 0.06(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathrm{C} \mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=167.5$, $155.3,138.4,137.9,137.6,128.7,128.6,128.5,128.12,128.10,127.92,127.86,127.8,105.7,77.1,73.5$, 72.5, 71.61, 71.56, 68.4, 68.1, 62.5, 17.6, -1.3. IR (film): $\tilde{v}=3031,2952,2897,1701,1633,1454,1293$, 1275, 1250, 1195, 1071, $1028 \mathrm{~cm}^{-1}$. HRMS (ESI): m / z : calcd. for $\mathrm{C}_{33} \mathrm{H}_{40} \mathrm{O}_{6} \mathrm{SiNa}^{+}: 583.24854$; found: 583.24864 .

2-(Trimethylsilyl)ethyl (2R,3R,4R)-3,4-bis((tert-butyldimethylsilyl)oxy)-2-(((tert-butyldimethylsilyl)-

 oxy)methyl)-3,4-dihydro-2H-pyran-5-carboxylate (S-4). $\mathrm{Pd}(\mathrm{OH})_{2} / \mathrm{C}(375 \mathrm{mg}, 10 \%$ w / w) was added to a solution of compound $\mathbf{S - 3}(3.75 \mathrm{~g}, 6.69 \mathrm{mmol})$ in $\mathrm{CH}_{3} \mathrm{OH}(66 \mathrm{~mL})$. The solution was purged with H_{2} and stirred for 15 h under a H_{2} atmosphere (1 atm). The mixture was then filtered through a plug of Celite ${ }^{\circledR}$ and the filtrate was concentrated.

TBSOTf ($6.20 \mathrm{~mL}, 26.99 \mathrm{mmol}$) was added to a solution of the crude triol in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(16.5 \mathrm{~mL})$ and pyridine (6.5 mL) at $0^{\circ} \mathrm{C}$. The mixture was stirred for 16 h while warming to room temperature, before the reaction was quenched with sat. aq. $\mathrm{NH}_{4} \mathrm{Cl}$ and the aqueous phase extracted with tert-butyl methyl ether. The combined extracts were washed with brine and dried over MgSO_{4}. The drying agent was filtered off and the solvent evaporated. Purification of the residue by flash chromatography (hexanes/EtOAc, 60:1) furnished the title compound ($3.72 \mathrm{~g}, 88 \%$). $[\alpha]_{\mathrm{D}}^{20}:+4.3$ (c = 1, CHCl_{3}). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.55(\mathrm{~s}, 1 \mathrm{H}), 4.36-4.20(\mathrm{~m}, 3 \mathrm{H}), 4.20-4.08(\mathrm{~m}, 1 \mathrm{H}), 3.93(\mathrm{dd}, \mathrm{J}=$ $11.6,8.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.90-3.85(\mathrm{~m}, 1 \mathrm{H}), 3.73(\mathrm{dd}, J=11.7,3.9 \mathrm{~Hz}, 1 \mathrm{H}), 1.07-0.97(\mathrm{~m}, 2 \mathrm{H}), 0.89(\mathrm{~s}, 9 \mathrm{H})$, $0.84(\mathrm{~s}, 18 \mathrm{H}), 0.15(\mathrm{~s}, 3 \mathrm{H}), 0.09(\mathrm{~s}, 3 \mathrm{H}), 0.08(\mathrm{~s}, 3 \mathrm{H}), 0.07(\mathrm{~s}, 3 \mathrm{H}), 0.05(\mathrm{~s}, 3 \mathrm{H}), 0.04(\mathrm{~s}, 12 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=167.7,154.4,106.7,82.3,68.3,63.8,62.3,62.1,26.1,25.84,25.78,18.5,18.13$, 18.10, 17.5, -1.3, -4.6, -4.67 (2 C), -4.71, -5.05, -5.14. IR (film): $\tilde{v}=2954,2930,2896,2858,1706$, 1635, 1472, 1252, 1197, $1076 \mathrm{~cm}^{-1}$. HRMS (ESI): m / z : calcd. for $\mathrm{C}_{30} \mathrm{H}_{64} \mathrm{O}_{6} \mathrm{Si}_{4} \mathrm{Na}^{+}: 655.36777$; found: 655.36722.

2-(Trimethylsilyl)ethyl (2R,3R,4R)-3,4-bis((tert-butyldimethylsilyl)oxy)-2-(((tert-butyldimethylsilyl)-oxy)methyl)-6-iodo-3,4-dihydro-2H-pyran-5-carboxylate (S-5). nBuLi (1.6 M in hexanes, 1.60 mL ,
 $2.56 \mathrm{mmol})$ was added dropwise to a solution of $i \mathrm{Pr}_{2} \mathrm{NH}(0.50 \mathrm{~mL}, 3.57 \mathrm{mmol})$ in THF (5.70 mL) at $0^{\circ} \mathrm{C}$ and the resulting mixture was stirred for 15 min before it was cooled to $-78^{\circ} \mathrm{C}$. A solution of compound $\mathrm{S}-4(540 \mathrm{mg}, 0.85 \mathrm{mmol})$ in THF (5.70 mL) was added dropwise and the resulting mixture was stirred for 1.5 h . A solution of iodine ($1.08 \mathrm{~g}, 4.26 \mathrm{mmol}$) in THF (5.70 mL) was then added dropwise and stirring
was continued for 30 min . The reaction was quenched with sat. aq. $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$ and the aqueous layer extracted with tert-butyl methyl ether. The combined extracts were washed with brine and dried over MgSO_{4}, the drying agent was filtered off and the solvent was evaporated. Purification of the residue by flash chromatography (hexanes/EtOAc, 20:1) afforded the title compound ($598 \mathrm{mg}, 92 \%$). $[\alpha]_{\mathrm{D}}^{20}:+4.2$ (c $\left.=1, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=4.45(\mathrm{t}, \mathrm{J}=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.41-4.32(\mathrm{~m}, 1 \mathrm{H}), 4.32-4.26(\mathrm{~m}$, $1 \mathrm{H}), 4.15-4.06(\mathrm{~m}, 1 \mathrm{H}), 4.02-3.94(\mathrm{~m}, 2 \mathrm{H}), 3.79(\mathrm{dd}, J=11.5,4.9 \mathrm{~Hz}, 1 \mathrm{H}), 1.06(\mathrm{dd}, J=9.6,8.1 \mathrm{~Hz}, 2 \mathrm{H})$, $0.89(\mathrm{~s}, 9 \mathrm{H}), 0.85(\mathrm{~s}, 9 \mathrm{H}), 0.83(\mathrm{~s}, 9 \mathrm{H}), 0.11(\mathrm{~s}, 3 \mathrm{H}), 0.08(\mathrm{~s}, 9 \mathrm{H}), 0.06-0.02(\mathrm{~m}, 15 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz, $\left.\mathrm{CDCl}_{3}\right): \delta=166.7,119.6,112.7,87.1,67.9,66.5,63.0,61.7,26.1,25.78,25.76,18.5,18.10,18.07,17.6$, $-1.4,-4.4,-4.5,-4.6,-4.8,-5.0,-5.2$. IR (film): $\tilde{v}=2953,2929,2894,2857,1698,1584,1471,1521$, 1113, $1064 \mathrm{~cm}^{-1}$. HRMS (ESI): m/z: calcd. for $\mathrm{C}_{30} \mathrm{H}_{63} \mathrm{O}_{6} \mathrm{Si}_{4} \mathrm{INa}^{+}$: 781.26417; found: 781.26387.

2-(Trimethylsilyl)ethyl (2R,3R,4R)-3,4-bis((tert-butyldimethylsilyl)oxy)-2-(((tert-butyldimethylsilyl)-oxy)methyl)-6-(hex-1-yn-1-yl)-3,4-dihydro-2H-pyran-5-carboxylate. 1-Hexyne ($0.1 \mathrm{~mL}, 0.87 \mathrm{mmol}$) was
 added to a degassed solution of S-5 ($100 \mathrm{mg}, 0.13 \mathrm{mmol}$) and $\mathrm{NEt}_{3}(2.5 \mathrm{~mL}$, 17.94 mmol) in THF (0.9 mL) at room temperature, followed by Cul (5 mg , $0.03 \mathrm{mmol}, 20 \mathrm{~mol} \%)$ and $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{Cl}_{2}(10 \mathrm{mg}, 0.01 \mathrm{mmol}, 10 \mathrm{~mol} \%)$. The mixture was stirred for 15 h before it was filtered through a plug of Celite ${ }^{\circledR}$. The filtrate was diluted with sat. aq. $\mathrm{NH}_{4} \mathrm{Cl}$ and the aqueous phase extracted with tert-butyl methyl ether. The combined extracts were washed with brine and dried over MgSO_{4}, the drying agent was filtered off and the solvent was evaporated. Purification of the residue by flash chromatography (hexanes/EtOAc, 60:1) afforded the title compound as a colorless syrup ($88 \mathrm{mg}, 93 \%$). $[\alpha]_{\mathrm{D}}^{20}:+2.3\left(\mathrm{c}=1, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=4.46(\mathrm{t}, \mathrm{J}=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.41-4.30(\mathrm{~m}, 1 \mathrm{H}), 4.29$ $-4.21(\mathrm{~m}, 1 \mathrm{H}), 4.19-4.08(\mathrm{~m}, 1 \mathrm{H}), 3.94(\mathrm{dd}, J=2.8,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.90(\mathrm{dd}, J=11.4,7.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.80(\mathrm{dd}$, $J=11.3,5.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.42(\mathrm{t}, \mathrm{J}=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 1.64-1.54(\mathrm{~m}, 2 \mathrm{H}), 1.50-1.39(\mathrm{~m}, 2 \mathrm{H}), 1.10-1.00(\mathrm{~m}, 2 \mathrm{H})$, $0.92(\mathrm{t}, \mathrm{J}=7.3 \mathrm{~Hz}, 3 \mathrm{H}), 0.89(\mathrm{~s}, 9 \mathrm{H}), 0.86(\mathrm{~s}, 9 \mathrm{H}), 0.83(\mathrm{~s}, 9 \mathrm{H}), 0.14(\mathrm{~s}, 3 \mathrm{H}), 0.09-0.06(\mathrm{~m}, 12 \mathrm{H}), 0.06-$ $0.03(\mathrm{~m}, 12 \mathrm{H}) .{ }^{13} \mathrm{C} \mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=167.3,144.2,109.9,96.9,82.5,75.9,67.7,65.6,62.4,62.0$, $30.3,26.1,25.9,25.8,22.3,19.5,18.5,18.2,17.7,13.8,-1.4,-4.46,-4.53,-4.6,-4.7,-5.0,-5.2$. IR (film): $\tilde{v}=2954,2930,2858,1689,1602,1471,1389,1251,1112,1069 \mathrm{~cm}^{-1}$. HRMS (ESI): m / z : calcd. for $\mathrm{C}_{36} \mathrm{H}_{72} \mathrm{O}_{6} \mathrm{Si}_{4} \mathrm{Na}^{+}$: 735.42997; found: 735.42982.

2-(Trimethylsilyl)ethyl (2R,3S,4R)-6-(3-acetoxyprop-1-yn-1-yl)-3,4-bis(benzyloxy)-2-((benzyloxy)-
 methyl)-3,4-dihydro-2H-pyran-5-carboxylate. Prepared analogously from propargyl acetate ($33 \mu \mathrm{~L}, 0.33 \mathrm{mmol}$) and $\mathrm{S}-5(50 \mathrm{mg}, 0.07 \mathrm{mmol})(42 \mathrm{mg}$, $87 \%) .[\alpha]_{\mathrm{D}}^{20}:+3.5\left(\mathrm{c}=1, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=4.88(\mathrm{~s}, 2 \mathrm{H})$, $4.44(\mathrm{t}, \mathrm{J}=2.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.39-4.30(\mathrm{~m}, 1 \mathrm{H}), 4.29-4.23 \mathrm{~m}, 1 \mathrm{H}), 4.19-4.09(\mathrm{~m}$, 1 H), 3.94 (dd, $J=2.8,1.5 \mathrm{~Hz}, 1 \mathrm{H}$), 3.88 (dd, $J=11.4,7.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.79(\mathrm{dd}, J=$ $11.4,5.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.10(\mathrm{~s}, 3 \mathrm{H}), 1.09-1.01(\mathrm{~m}, 2 \mathrm{H}), 0.88(\mathrm{~s}, 9 \mathrm{H}), 0.85(\mathrm{~s}, 9 \mathrm{H})$, $0.83(\mathrm{~s}, 9 \mathrm{H}), 0.13(\mathrm{~s}, 3 \mathrm{H}), 0.08-0.07(\mathrm{~m}, 6 \mathrm{H}), 0.07-0.05(\mathrm{~m}, 6 \mathrm{H}), 0.04(\mathrm{~s}, 9 \mathrm{H}), 0.03(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=170.3,166.7,143.0,111.6,88.3,82.7,81.3,67.5,65.3,62.8,61.8,52.6,26.1,25.82$, $25.76,20.9,18.5,18.1,17.4,-1.4,-4.5,-4.58,-4.62,-4.8,-5.1,-5.2$. IR (film): $\tilde{v}=2953,2929,2857$, 1753, 1692, 1607, 1472, 1389, 1321, 1250, 1217, 1111, $1067 \mathrm{~cm}^{-1}$. HRMS (ESI): m/z: calcd. for $\mathrm{C}_{35} \mathrm{H}_{68} \mathrm{O}_{8} \mathrm{Si}_{4} \mathrm{Na}^{+}$: 751.38857; found: 751.38835.

2-(Trimethylsilyl)ethyl (2R,3R,4R)-3,4-bis((tert-butyldimethylsilyl)oxy)-2-(((tert-butyldimethylsilyl)-oxy)methyl)-6-(3-hydroxyprop-1-yn-1-yl)-3,4-dihydro-2H-pyran-5-carboxylate. Prepared analogously from S-5 ($147 \mathrm{mg}, 0.19 \mathrm{mmol}$) and propargylic alcohol ($36 \mu \mathrm{~L}, 0.62 \mathrm{mmol}$) (116
 $\mathrm{mg}, 87 \%) \cdot[\alpha]_{\mathrm{D}}^{20}:+6.9\left(\mathrm{c}=1, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=4.50-4.45$ $(\mathrm{m}, 2 \mathrm{H}), 4.45(\mathrm{t}, \mathrm{J}=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.40-4.31(\mathrm{~m}, 1 \mathrm{H}), 4.29-4.22(\mathrm{~m}, 1 \mathrm{H}), 4.16-$ $4.07(\mathrm{~m}, 1 \mathrm{H}), 3.95(\mathrm{dd}, \mathrm{J}=2.6,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.88(\mathrm{dd}, \mathrm{J}=11.2,7.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.80$ (dd, $J=11.4,5.5 \mathrm{~Hz}, 1 \mathrm{H}$), 2.26 (bs, 1H), 1.04 (dd, $J=9.5,7.9 \mathrm{~Hz}, 1 \mathrm{H}$), 0.88 (s, $9 \mathrm{H}), 0.85(\mathrm{~s}, 9 \mathrm{H}), 0.83(\mathrm{~s}, 9 \mathrm{H}), 0.13(\mathrm{~s}, 3 \mathrm{H}), 0.08(\mathrm{~s}, 6 \mathrm{H}), 0.06(\mathrm{~s}, 6 \mathrm{H}), 0.04(\mathrm{~s}$, 12H). ${ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl_{3}): $\delta=166.9,143.6,111.1,93.1,82.6,80.6,67.5,65.3,62.8,61.8,51.6$, 26.1, 25.81, 25.75, 18.5, 18.1, 17.5, 1.2, -1.4, -4.4, -4.58, -4.63, -4.8, -5.1, -5.2. IR (film): $\tilde{v}=3429$, 2953, 2930, 2896, 2857, 1692, 1601, 1472, 1389, 1251, 1220, $1070 \mathrm{~cm}^{-1}$. HRMS (ESI): m/z: calcd. for $\mathrm{C}_{33} \mathrm{H}_{66} \mathrm{O}_{7} \mathrm{Si}_{4} \mathrm{Na}^{+}$: 709.37782; found: 709.37779.

3,6-Dimethyl-4-hydroxy-2-pyrone. SPhosAuNTf ($4 \mathrm{mg}, 0.005 \mathrm{mmol}, 1 \mathrm{~mol} \%$) was added to a solution of 2-(trimethylsilyl)ethyl 2-methyl-3-oxohex-4-ynoate ($120 \mathrm{mg}, 0.5 \mathrm{mmol}$) in HOAc (2.5 mL) and the resulting mixture was stirred for 2 h . The solvent was evaporated and the residue washed with $\mathrm{Et}_{2} \mathrm{O}$ to yield the title compound as a white solids in analytically pure form ($68 \mathrm{mg}, 97 \%$). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$): $\delta=5.99(\mathrm{~s}, 1 \mathrm{H}), 2.20(\mathrm{~s}, 3 \mathrm{H}), 1.84(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 $\mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$): $\delta=169.1,167.9,161.4,101.5,98.7,19.5,8.2$. IR (film): $\tilde{v}=2958,2926,2856,2672,1729$, 1638, 1582, 1404, 1251, $1131 \mathrm{~cm}^{-1}$. HRMS (ESI): m / z : calcd. for $\mathrm{C}_{7} \mathrm{H}_{8} \mathrm{O}_{3} \mathrm{Na}^{+}$: 163.03661; found: 163.03656 .

3-Methyl-6-phenyl-4-hydroxy-2-pyrone. Prepared analogously as a white solid ($126 \mathrm{mg}, 94 \%$). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz},\left[\mathrm{D}_{5}\right]$-pyridine): $\delta=7.87-7.77(\mathrm{~m}, 2 \mathrm{H}), 7.36-7.26(\mathrm{~m}, 3 \mathrm{H}), 6.82(\mathrm{~s}, 1 \mathrm{H}), 2.28(\mathrm{~s}$, $3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz, [D5]-pyridine): $\delta=166.0,165.4,157.6,132.2,130.5,129.1,125.6$, 99.9, 98.7, 9.4. IR (film): $\tilde{v}=2877,2650,2543,1612,1560,1395,1372,1260,1229,1154$ cm^{-1}. HRMS (ESI): m / z : calcd. for $\mathrm{C}_{12} \mathrm{H}_{10} \mathrm{O}_{3} \mathrm{Na}^{+}$: 225.05221; found: 225.05224 .
(2R,3R,4R)-7-Butyl-3,4-bis((tert-butyldimethylsilyl)oxy)-2-(((tert-butyldimethylsilyl)oxy)methyl)-3,4-dihydro-2H,5H-pyrano[4,3-b]pyran-5-one. Prepared analogously using
 $\mathrm{CH}_{3} \mathrm{NO}_{2}$ as the solvent ($50 \mathrm{mg}, 83 \%$). $[\alpha]_{\mathrm{D}}^{20}:+34.1\left(\mathrm{c}=1, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=5.75(\mathrm{~s}, 1 \mathrm{H}), 4.31-4.12(\mathrm{~m}, 2 \mathrm{H}), 4.01-3.92(\mathrm{~m}, 2 \mathrm{H}), 3.80$ (dd, $J=11.6,4.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.44(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 1.68-1.57(\mathrm{~m}, 2 \mathrm{H}), 1.36(\mathrm{hex}, J=$ $7.4 \mathrm{~Hz}, 2 \mathrm{H}), 0.92(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H}), 0.89(\mathrm{~s}, 9 \mathrm{H}), 0.86(\mathrm{~s}, 9 \mathrm{H}), 0.82(\mathrm{~s}, 9 \mathrm{H}), 0.21(\mathrm{~s}, 3 \mathrm{H}), 0.16(\mathrm{~s}, 3 \mathrm{H}), 0.09(\mathrm{~s}$, $3 \mathrm{H}), 0.07(\mathrm{~s}, 3 \mathrm{H}), 0.04(\mathrm{~s}, 3 \mathrm{H}), 0.02(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl $): \delta=165.5,164.8,163.4,99.5,98.6$, 83.3, 68.4, 63.6, 62.5, 33.5, 28.7, 26.04, 25.94, 25.80, 22.2, 18.5, 18.2, 18.1, 13.9, $-4.5,-4.6,-4.7,-4.9$, -5.09, -5.13. IR (film): $\tilde{v}=2954,2929,2857,1721,1652,1588,1433,1523,1105,1071 \mathrm{~cm}^{-1}$. HRMS (ESI): m / z : calcd. for $\mathrm{C}_{31} \mathrm{H}_{60} \mathrm{O}_{6} \mathrm{Si}_{3} \mathrm{Na}^{+}$: 635.35868; found: 635.35899 .
((2R,3R,4R)-3,4-Bis((tert-butyldimethylsilyl)oxy)-2-(((tert-butyldimethylsilyl)oxy)methyl)-5-oxo-3,4-

dihydro-2H,5H-pyrano[4,3-b]pyran-7-yl)methyl acetate. Prepared analogously in $\mathrm{CH}_{3} \mathrm{NO}_{2}$ as the solvent ($18 \mathrm{mg}, 91 \%$). $[\alpha]_{\mathrm{D}}^{20}:+38.8\left(\mathrm{c}=1, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=6.01(\mathrm{~s}, 1 \mathrm{H}), 4.82(\mathrm{~s}, 2 \mathrm{H}), 4.42-4.32(\mathrm{~m}, 2 \mathrm{H}), 3.98(\mathrm{dd}, \mathrm{J}=2.5$, $1.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.94(\mathrm{dd}, J=11.6,8.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.82(\mathrm{dd}, J=11.6,4.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.15$ $(\mathrm{s}, 3 \mathrm{H}), 0.89(\mathrm{~s}, 9 \mathrm{H}), 0.86(\mathrm{~s}, 9 \mathrm{H}), 0.83(\mathrm{~s}, 9 \mathrm{H}), 0.21(\mathrm{~s}, 3 \mathrm{H}), 0.16(\mathrm{~s}, 3 \mathrm{H}), 0.09(\mathrm{~s}, 3 \mathrm{H}), 0.07(\mathrm{~s}, 3 \mathrm{H}), 0.04(\mathrm{~s}$, $3 \mathrm{H}), 0.02(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl_{3}): $\delta=170.2,163.5,162.7,157.9,101.0,100.4,83.5,68.2$, $63.5,62.3,61.6,26.0,25.9,25.8,20.8,18.5,18.2,18.1,-4.5,-4.7,-4.8,-4.9,-5.11,-5.14$. IR (film): $\tilde{v}=$

2953, 2923, 2857, 1754, 1727, 1662, 1591, 1431, 1252, 1219, $1071 \mathrm{~cm}^{-1}$. HRMS (ESI): m / z : calcd. for $\mathrm{C}_{30} \mathrm{H}_{56} \mathrm{O}_{8} \mathrm{Si}_{3} \mathrm{Na}^{+}$: 651.31722; found: 671.31753 .
(2R,3R,4R)-3,4-Bis((tert-butyldimethylsilyl)oxy)-2-(((tert-butyldimethylsilyl)oxy)methyl)-7-
(hydroxymethyl)-3,4-dihydro-2H,5H-pyrano[4,3-b]pyran-5-one. Prepared analogously in $\mathrm{CH}_{3} \mathrm{NO}_{2}$ as the solvent ($100 \mathrm{mg}, 89 \%$). $[\alpha]_{\mathrm{D}}^{20}:+41.1\left(\mathrm{c}=1, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta$
 $=6.11(\mathrm{~s}, 1 \mathrm{H}), 4.44-4.32(\mathrm{~m}, 4 \mathrm{H}), 4.00-3.97(\mathrm{~m}, 1 \mathrm{H}), 3.95(\mathrm{dd}, \mathrm{J}=10.7,7.2$ $\mathrm{Hz}, 1 \mathrm{H}), 3.81(\mathrm{dd}, J=11.6,4.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.13(\mathrm{bs}, 1 \mathrm{H}), 0.88(\mathrm{~s}, 9 \mathrm{H}), 0.85(\mathrm{~s}, 9 \mathrm{H})$, $0.81(\mathrm{~s}, 9 \mathrm{H}), 0.19(\mathrm{~s}, 3 \mathrm{H}), 0.14(\mathrm{~s}, 3 \mathrm{H}), 0.08(\mathrm{~s}, 3 \mathrm{H}), 0.06(\mathrm{~s}, 3 \mathrm{H}), 0.04(\mathrm{~s}, 3 \mathrm{H})$, 0.02 ($\mathrm{s}, 3 \mathrm{H}$). ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=164.3,163.5,163.2,99.5,99.2,83.5,68.1,63.4,62.4,61.1$, $26.0,25.8,25.7,18.4,18.2,18.0,-4.6,-4.7,-4.8,-5.0,-5.1,-5.2$. IR (film): $\tilde{v}=3413,2953,2926,2857$, 1724, 1697, 1587, 1472, 1432, 1254, $1077 \mathrm{~cm}^{-1}$. HRMS (ESI): m / z : calcd. for $\mathrm{C}_{28} \mathrm{H}_{54} \mathrm{O}_{7} \mathrm{Si}_{3} \mathrm{Na}^{+}$: 609.30704; found: 609.30696.

Preparation of 2-Alkoxy-4-pyrones.

2-Ethyl-6-methoxy-4H-pyran-4-one. SPhosAuNTf ${ }_{2}(1.3 \mathrm{mg}, 1.5 \mu \mathrm{~mol})$ was added to a solution of methyl $3-$ oxohept-4-ynoate ($21.8 \mathrm{mg}, 0.141 \mathrm{mmol}$) in HOAc (0.5 mL). The mixture was stirred for 24 h and
 concentrated, and the residue was purified by flash chromatography (hexanes/EtOAc, $1: 1 \rightarrow 0 / 1$) to give the title compound as a colorless solid (19.4 mg, 89\%). ${ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=1.20(\mathrm{t}, J=7.5 \mathrm{~Hz}, 3 \mathrm{H}), 2.49(\mathrm{dq}, J=7.5,0.7 \mathrm{~Hz}, 2 \mathrm{H}), 3.84(\mathrm{~s}, 3 \mathrm{H}), 5.43(\mathrm{~d}$, $J=1.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.97(\mathrm{dt}, J=1.8,0.7 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{CNMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=10.8,26.3,56.2,89.6,111.1$, 166.4, 168.3, 182.0; IR (film): $\tilde{v}=3074,2972,2941,1657,1611,1576,1455,1393,1241,1161,1054$, 985, 961, 918, 882, $839 \mathrm{~cm}^{-1}$; MS (EI): m/z (\%) 154 (76), 139 (3), 126 (12), 111 (72), 101 (11), 83 (12), 69 (100), 59 (12), 39 (15), 33 (1), 29 (21); HRMS (EI): m/z: calcd for $\mathrm{C}_{8} \mathrm{H}_{10} \mathrm{O}_{3}\left[M^{+}\right]: 154.06300$, found: 154.06313.

3-Bromo-6-ethyl-2-methoxy-4H-pyran-4-one. Prepared analogously as a as a colorless solid (16.9 mg,
 $66 \%) .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=1.25(\mathrm{t}, J=7.5 \mathrm{~Hz}, 3 \mathrm{H}), 2.57(\mathrm{dq}, J=7.5,0.8 \mathrm{~Hz}, 2 \mathrm{H})$, $4.08(\mathrm{~s}, 3 \mathrm{H}), 6.12(\mathrm{t}, \mathrm{J}=0.8 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=10.8,25.9,56.7,90.3$, 110.5, 162.7, 164.5, 175.6; IR (film): $\tilde{v}=2961,1660,1633,1571,1466,1420,1373$, 1347, 1293, 1246, 1146, 1102, 1062, 1024, 977, 913, 847, $727 \mathrm{~cm}^{-1}$; MS (EI): m / z (\%) 234 (98), 232 (100), 219 (5), 217 (5), 191 (20), 189 (21), 180 (65), 178 (68), 149 (16), 147 (14), 121 (14), 106 (5), 93 (15), 81 (18), 69 (46), 59 (55), 53 (39), 43 (17), 39 (40); HRMS (ESI+): m / z : calcd for $\mathrm{C}_{8} \mathrm{H}_{9} \mathrm{BrNaO}_{3}$ $\left[M+N a^{+}\right]: 254.96274$, found: 254.96275 .

2-(Benzyloxy)-6-ethyl-2H-pyran-4-one. Prepared analogously as a white solid ($21.6 \mathrm{mg}, 94 \%$). $\mathrm{Mp}=75-$ $76{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=1.21,(\mathrm{t}, \mathrm{J}=7.5 \mathrm{~Hz}, 3 \mathrm{H}), 2.51(\mathrm{dt}, J=7.5,0.5 \mathrm{~Hz}$,
 $2 \mathrm{H}), 5.09(\mathrm{~s}, 2 \mathrm{H}), 5.54(\mathrm{~d}, \mathrm{~J}=1.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.99(\mathrm{~m}, J=1.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.35-7.44(\mathrm{~m}, 5 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=10.7,26.2,71.2,90.9,111.1,127.9,128.9,129.0,133.7$, 166.4, 167.1, 181.9; IR (film): $\tilde{v}=3051,2973,2914,1656,1615,1589,1575,1500$, $1455,1416,1380,1366,1302,1251,1226,103,1157,1091,1059,1029,1005,978,924,898,800,787$, 740, 691, 681, $670 \mathrm{~cm}^{-1}$; MS (EI): m/z (\%) 230 (1) 174 (1), 132 (15), 91 (100), 77 (1), 65 (9), 51 (1), 40 (3), 29 (2) HRMS (EI): m/z: calcd for $\mathrm{C}_{14} \mathrm{H}_{14} \mathrm{O}_{3} \mathrm{Na}\left[\mathrm{M}+\mathrm{Na}^{+}\right]$: 253.08351, found: 253.08334.

2-(Hept-5-yn-1-yl)-6-\{[(3S,4R,6Z,9Z)-4-(methoxymethoxy)tetradeca-6,9-dien-12-yn-3-yl]oxy\}-4H-pyran-
 4-one. Prepared analogously in MeCN/HOAc (5:1) as a colorless oil (27.5 $\mathrm{mg}, 86 \%) .[\alpha]_{\mathrm{D}}^{25}=-22.7\left(\mathrm{c}=0.65, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=$ $1.00(\mathrm{t}, \mathrm{J}=7.4 \mathrm{~Hz}, 3 \mathrm{H}), 1.49-1.58(\mathrm{~m}, 2 \mathrm{H}), 1.69-1.89(\mathrm{~m}, 4 \mathrm{H}), 1.77(\mathrm{t}, \mathrm{J}=2.5$ $\mathrm{Hz}, 3 \mathrm{H}), 1.77(\mathrm{t}, \mathrm{J}=2.5 \mathrm{~Hz}, 3 \mathrm{H}), 2.13-2.21(\mathrm{~m}, 2 \mathrm{H}), 2.29-2.46(\mathrm{~m}, 2 \mathrm{H}), 2.48$ ($\mathrm{t}, \mathrm{J}=7.6 \mathrm{~Hz}, 2 \mathrm{H}$), 2.76-2.83 (m, 2H), 2.86-2.93 (m, 2H), $3.36(\mathrm{~s}, 3 \mathrm{H}), 3.82$ (dt, $J=6.3,3.3 \mathrm{~Hz}, 1 \mathrm{H}$), $4.36(\mathrm{dt}, J=8.0,3.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.64(\mathrm{~d}, J=6.9 \mathrm{~Hz}$, $1 \mathrm{H}), 4.66(\mathrm{~d}, \mathrm{~J}=6.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.33-5.56(\mathrm{~m}, 5 \mathrm{H}), 5.99(\mathrm{~d}, J=1.5 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=3.6$, $3.6,10.2,17.3,18.5,22.6,25.8,25.8,28.2,28.7,32.6,56.0,75.7,76.3,76.8,77.4,78.4,83.4,91.6,96.2$, 112.3, 125.0, 125.8, 128.7, 130.6, 164.9, 167.1, 182.0; IR (film): $\tilde{v}=2921,1661,1625,1581,1398,1241$, 1149, 1100, 1031, 918, 855, $751 \mathrm{~cm}^{-1}$; MS (EI): m / z (\%) 454 (3), 409, (1), 383 (2), 352 (2), 321 (4), 263 (2), 251 (31), 219 (9), 207 (21), 177 (9), 117 (15), 91 (18), 71 (14), 45 (100); HRMS (ESI): m/z: calcd. for $\mathrm{C}_{28} \mathrm{H}_{38} \mathrm{NaO}_{5}\left[\mathrm{M}+\mathrm{Na}^{+}\right]: 477.26114$, found: 477.26141.

2-(Heptyl)-6-[(3S,4R,6Z)-4-(methoxymethoxy)-undecene-2-yl]-4H-pyran-4-one. Prepared analogously in MeCN/HOAc (3:1) as a colorless oil (95 mg, 95\%). $[\alpha]_{\mathrm{D}}^{20}=-14.3$ ($\mathrm{c}=0.33$,
 CHCl_{3}); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=5.98(\mathrm{~s}, 1 \mathrm{H}), 5.55-5.35(\mathrm{~m}, 3 \mathrm{H}), 4.64$ (dd, $J=15.6,6.9 \mathrm{~Hz}, 2 \mathrm{H}), 4.37-4.33(\mathrm{~m}, 1 \mathrm{H}), 3.83-3.79(\mathrm{~m}, 1 \mathrm{H}), 3.35(\mathrm{~s}, 3 \mathrm{H})$, 2.45-2-27 (m, 4H), 2.03-1.99 (m, 2H), 1.88-1.57 (m, 4H), 1.43-1.29 (m, 6H), $0.99(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}), 0.93(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H}), 0.88(\mathrm{t}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=182.5,174.5,167.2,165.5,133.4,124.0,112.0$, 96.1, 91.5, 83.5, 76.8, 55.8, 32.7, 31.7, 28.7, 27.2, 22.4, 22.3, 22.1, 14.0, 13.7, 10.1; IR (film): $\tilde{v}=2957,2929,1719,1661,1579,1402,1245,1090,920,855 \mathrm{~cm}^{-1} ; \mathrm{MS}$ (ESI+): $\left[\mathrm{M}+\mathrm{Na}^{+}\right]: 403$; HRMS (ESI): m / z : calcd. for $\mathrm{C}_{22} \mathrm{H}_{36} \mathrm{O}_{5}\left[\mathrm{M}+\mathrm{Na}^{+}\right]$: 403.24549, found: 403.24553.

Representative Procedure for the Silver-Catalyzed Preparation of 2-tert-Butoxy-4-pyrones. 2-(tert-
 Butoxy)-6-pentyl-4H-pyran-4-one. N, N^{\prime}-Dimethylethylenediamine (DMEDA, 4.4 $\mathrm{mg}, 0.05 \mathrm{mmol}, 5 \mathrm{~mol} \%)$ and $\mathrm{AgOTs}(14 \mathrm{mg}, 0.05 \mathrm{mmol}, 5 \mathrm{~mol} \%$) were successively added to a solution of tert-butyl-3-oxodec-4-ynoate ($238.3 \mathrm{mg}, 0.5$ mmol) in chloroform (5 mL). ${ }^{11}$ The mixture was stirred until TLC showed complete conversion of the substrate (ca. 24 h). The mixture was filtered through a plug of silica, eluting with tert-butyl methyl ether, and the filtrate was evaporated. Flash chromatography (silica) furnished the title compound as a colorless oil ($203 \mathrm{mg}, 85 \%$). ${ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right):{ }^{11} \delta=5.98(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=1.9$ $\mathrm{Hz}), 5.56(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=2.0 \mathrm{~Hz}), 2.45(\mathrm{t}, 2 \mathrm{H}, J=7.5 \mathrm{~Hz}), 1.67-1.59(\mathrm{~m}, 2 \mathrm{H}), 1.48(\mathrm{~s}, 9 \mathrm{H}), 1.35-1.29(\mathrm{~m}, 4 \mathrm{H})$, $0.89(\mathrm{t}, 3 \mathrm{H}, \mathrm{J}=7.0 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): ${ }^{11} \delta=182.4,165.7,165.5,112.4,98.3,85.3,33.1,30.9$, 28.7, 26.3, 22.2, 13.8; IR (film): $\tilde{v}=2932,2863,1657,1626,1586,1370,1246,1136,932,857,752 \mathrm{~cm}^{-1}$; MS (EI) m/z (\%): 238 (3), 183 (15), 182 (34), 154 (3), 140 (11), 127 (7), 126 (100), 122 (6), 112 (4), 111 (51), 98 (33), 97 (10), 71 (5), 69 (29), 57 (53), 56 (9), 55 (17), 43 (16), 41 (45), 39 (16), 29 (17), 27 (8); HRMS (ESI): m / z : calcd. for $\mathrm{C}_{14} \mathrm{H}_{22} \mathrm{O}_{3} \mathrm{Na}\left[M^{+}+\mathrm{Na}\right]$: 261.14611, found 261.14613.

[^7]

Prepared analogously as a colorless oil ($142 \mathrm{mg}, 88 \%$). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=5.99(\mathrm{~s}, 1 \mathrm{H}), 2.43(\mathrm{t}, 2 \mathrm{H}, J=7.5 \mathrm{~Hz}), 2.30(\mathrm{t}, 2 \mathrm{H}, J=7.4 \mathrm{~Hz}), 1.66-1.55(\mathrm{~m}, 2 \mathrm{H})$, $1.47(\mathrm{~s}, 9 \mathrm{H}), 1.45-1.37(\mathrm{~m}, 2 \mathrm{H}), 1.35-1.20(\mathrm{~m}, 10 \mathrm{H}), 0.88(\mathrm{t}, 3 \mathrm{H}, \mathrm{J}=6.9 \mathrm{~Hz}), 0.85(\mathrm{t}$, $3 \mathrm{H}, \mathrm{J}=6.9 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=181.6,163.6,162.6,112.0,110.7$, 84.4, 32.9, 31.6, 30.8, 29.2, 28.1, 26.3, 22.6, 22.4, 22.2, 14.0, 13.8; IR (film): $\tilde{v}=$ 2956, 2927, 2858, 1660, 1627, 1589, 1400, 1370, 1263, 1144, 836, 741, $710 \mathrm{~cm}^{-1}$; MS (EI) $\mathrm{m} / \mathrm{z}(\%): 322$ (6), 267 (17), 266 (31), 265 (8), 249 (5), 237 (5), 224 (20), 223 (22), 210 (11), 209 (20), 197 (12), 195 (100), 168 (26), 167 (7), 153 (9), 141 (8), 140 (12), 126 (9), 111 (4), 99 (10), 71 (4), 57 (51), 55 (6), 43 (10), 41 (14), 29 (5); HRMS (ESI): m/z: calcd. for $\mathrm{C}_{20} \mathrm{H}_{34} \mathrm{O}_{3} \mathrm{Na}\left[\mathrm{M}^{+}+\mathrm{Na}\right]$: 345.24001, found 345.24029.

Prepared analogously as a white solid (106 mg, 87%). $\mathrm{Mp}=63-64{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR (300 $\mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.71-7.67(\mathrm{~m}, 2 \mathrm{H}), 7.47-7.42(\mathrm{~m}, 3 \mathrm{H}), 6.62(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=1.9 \mathrm{~Hz}), 5.68(\mathrm{~d}$, $1 \mathrm{H}, \mathrm{J}=2.0 \mathrm{~Hz}), 1.53(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=182.1,165.3,160.8,131.1$, 131.0, 129.0, 125.7, 110.4, 99.3, 85.6, 28.7; IR (film): $\tilde{v}=3069,2978,2932,1649$, 1587, 1449, 1371, 1334, 1229, 1138, 939, 876, 837, 766, 682, 633, 510, $450 \mathrm{~cm}^{-1}$; MS (EI) m / z (\%): 244 (5), 188 (51), 161 (11), 160 (100), 147 (8), 131 (11), 105 (41), 104 (6), 103 (7), 77 (28), 69 (18), 57 (17), 56 (11), 55 (6), 51 (8); HRMS (ESI): m / z : calcd. for $\mathrm{C}_{15} \mathrm{H}_{16} \mathrm{O}_{3} \mathrm{Na}\left[M^{+}+\mathrm{Na}\right]$: 267.09916, found 267.09926 .

Hispidine and Phellinin A

Compound 20. $\mathrm{Et}_{3} \mathrm{~N}(70 \mu \mathrm{~L}, 0.95 \mathrm{mmol}, 5 \mathrm{~mol} \%$) was added to a stirred suspension of $3,4-$
 (methylenedioxy)cinnamic acid (1.92 g, 10 mmol) in $\mathrm{CH}_{3} \mathrm{CN} / \mathrm{H}_{2} \mathrm{O}(9: 1,30 \mathrm{~mL})$, followed by portionwise addition of NBS ($2.1 \mathrm{~g}, 12 \mathrm{mmol}$). The mixture was stirred for 15 min (after a few minutes, all starting material had dissolved). For work up, the mixture was poured into water (100 mL), the aqueous layer was repeatedly extracted with $\mathrm{Et}_{2} \mathrm{O}$, and the combined extracts were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated. Purification of the residue by flash chromatography (hexanes $/ \mathrm{CH}_{2} \mathrm{Cl}_{2}, 3: 1$) gave the title compound in the form of white crystals. ($2.07 \mathrm{~g}, 91 \%$). ${ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=5.96(\mathrm{~s}, 2 \mathrm{H}), 6.59(\mathrm{~d}, \mathrm{~J}=13.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.75(\mathrm{~d}, \mathrm{~J}=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.75(\mathrm{~s}, 1 \mathrm{H}), 6.81(\mathrm{~d}, \mathrm{~J}=0.8$ $\mathrm{Hz}, 1 \mathrm{H}), 7.0(\mathrm{~d}, \mathrm{~J}=13.9 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=101.3,104,5,105.4,108.4,120.9,130.3$, 136.7, 147.8, 148.1.

Compound 21. Ethyl propiolate ($253 \mu \mathrm{~L}, 2.5 \mathrm{mmol}$) was added dropwise to a stirred solution of LDA (0.5 M in THF, $5 \mathrm{~mL}, 2.5 \mathrm{mmol}$,) at $-78{ }^{\circ} \mathrm{C}$. The mixture was stirred at this
temperature for 30 min before a solution of $\mathrm{ZnBr}_{2}(1 \mathrm{M}$ in $\mathrm{THF}, 2.5 \mathrm{~mL}, 2.5$ mmol) was introduced. The mixture was warmed to $0^{\circ} \mathrm{C}$ and stirring continued for 15 min . Compound 20 ($228 \mathrm{mg}, 1.0 \mathrm{mmol}$) and $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(62 \mathrm{mg}, 53 \mu \mathrm{~mol}, 5 \mathrm{~mol} \%)$ were added and stirring continued for another 18 h at ambient temperature. The mixture was poured into aq. sat. $\mathrm{NH}_{4} \mathrm{Cl}$ $(20 \mathrm{~mL})$, the aqueous layer was extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 30 \mathrm{~mL})$, and the combined extracts were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated. Purification of the residue by flash chromatography (hexanes/EtOAc, 95:5 \rightarrow 9:1) gave the title compound as a white solid ($165 \mathrm{mg}, 68 \%$). $\mathrm{Mp}=79-80^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta$ $=1.33(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 4.26(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 5.99(\mathrm{~s}, 2 \mathrm{H}), 6.00(\mathrm{~d}, \mathrm{~J}=16.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.78(\mathrm{~d}, J=8.0 \mathrm{~Hz}$, $1 \mathrm{H}), 6.87(\mathrm{dd}, J=8.1,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.92(\mathrm{~d}, J=1.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.14(\mathrm{~d}, J=16.2 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta=14.1,61.9,82.1,86.3,101.5,102.5,105.4,108.5,123.0,129.6,147.3,148.4,149.3,154.1 ;$ IR
(film): $\tilde{v}=2197,1710,1621,1595,1503,1490,1442,1366,1248,1194,1131,1094,1037,1011,946$, 932, 852, 800, $742 \mathrm{~cm}^{-1}$; MS (EI) m/z (\%): 244 (100), 229 (5), 216 (7), 199 (61), 185 (4), 171 (66), 157 (3), 141 (12), 129 (3), 113 (41), 99 (34), 87 (10), 75 (6), 63 (24), 51 (5), 39 (5), 29 (11); HRMS (EI): m/z: calcd. for $\mathrm{C}_{14} \mathrm{H}_{12} \mathrm{O}_{4} \mathrm{Na}\left[\mathrm{M}+\mathrm{Na}^{+}\right]$: 267.06278, found: 267.06258.

Compound 22. t-Butyl acetate ($234 \mathrm{mg}, 2 \mathrm{mmol}$) was added dropwise to a stirred solution of LDA (0.5 M
 in THF, $4 \mathrm{~mL}, 2.0 \mathrm{mmol}$) at $-78{ }^{\circ} \mathrm{C}$. The mixture was stirred at this temperature for 30 min before a solution of compound 21 ($244 \mathrm{mg}, 1.0$ mmol) in THF (1 ml) was added. Stirring was continued at $-78{ }^{\circ} \mathrm{C}$ for 3 h before the reaction was quenched with sat. aq. $\mathrm{NH}_{4} \mathrm{Cl}(20 \mathrm{~mL})$. The aqueous phase was extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 20 \mathrm{~mL})$, and the combined extracts were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated. Purification of the residue by flash chromatography (hexanes/EtOAc, 9:1 $\rightarrow 4: 1$) gave the title compound as a yellow oil ($280 \mathrm{mg}, 89 \%$). ${ }^{1} \mathrm{H} \mathrm{NMR}$ (ketone form, $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=1.49(\mathrm{~s}, 9 \mathrm{H})$, $3.52(\mathrm{~s}, 2 \mathrm{H}), 6.00(\mathrm{~s}, 2 \mathrm{H}), 6.05(\mathrm{~d}, J=16.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.79(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.90(\mathrm{dd}, J=8.0,1.6 \mathrm{~Hz}, 1 \mathrm{H})$, $6.95(\mathrm{~d}, \mathrm{~J}=1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.16(\mathrm{~d}, J=16.2 \mathrm{~Hz}, 1 \mathrm{H})$; characteristic signals of the enol form: $\delta=1.50(\mathrm{~s}, 9 \mathrm{H})$, $5.28(\mathrm{~s}, 1 \mathrm{H}), 5.98(\mathrm{~s}, 2 \mathrm{H}), 6.07(\mathrm{~d}, J=16.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.77(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.86(\mathrm{dd}, J=8.0,1.6 \mathrm{~Hz}, 1 \mathrm{H})$, $6.93(\mathrm{~d}, \mathrm{~J}=1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.02(\mathrm{~d}, \mathrm{~J}=16.2 \mathrm{~Hz}, 1 \mathrm{H}), 12.05(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(\right.$ ketone form, $\left.100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta$ $=27.9,52.6,82.2,89.4,93.0,101.6,102.6,105.5,108.6,123.4,129.5,148.4,148.4,149.6,165.4,179.0$; characteristic signals of the enol form: $\delta=28.3,80.4,82.2,85.3,98.3,101.4,103.9,105.3,108.5,122.6$, 130.1, 144.6, 148.3, 148.9, 154.9, 172.0; IR (film): $\tilde{v}=2979,2903,2170,1729,1663,1619,1589,1504$, 1490, 1447, 1392, 1366, 1287, 1250, 1148, 1102, 1035, 952, 928, 893, 833, 798, $761 \mathrm{~cm}^{-1} ; \mathrm{MS}(E \mathrm{I}) \mathrm{m} / \mathrm{z}$ (\%): 314 (29), 258 (100), 240 (19), 227 (3), 214 (19), 199 (88), 188 (31), 169 (32), 157 (15), 141 (11), 127 (14), 113 (31), 99 (16), 87 (6), 77 (5), 63 (12), 57 (63), 41 (20), 29 (14); HRMS (EI): m/z: calcd. for $\mathrm{C}_{18} \mathrm{H}_{18} \mathrm{O}_{5} \mathrm{Na}\left[\mathrm{M}+\mathrm{Na}^{+}\right]: 337.10465$, found: 337.10462.

Compound 23. The solution of compound 22 (386 mg 1.23 mmol) and SPhosAuNTf 2 ($22 \mathrm{mg}, 25 \mu \mathrm{~mol}, 2$
 $\mathrm{mol} \%$) in acetic acid (8 mL) was stirred for 2 h . The mixture was concentrated and the resulting solid was rinsed with cold $\mathrm{Et}_{2} \mathrm{O}(3 \times 5 \mathrm{~mL})$ and dried under vacuum to give the title compound as a yellow solid ($286 \mathrm{mg}, 90 \%$). Because of the low solubility, flash chromatography results in loss of material. $\mathrm{Mp}=239-242^{\circ} \mathrm{C}$ (decomp.); ${ }^{1} \mathrm{H}$ NMR ($\left.400 \mathrm{MHz},\left[\mathrm{D}_{6}\right]-\mathrm{DMSO}\right): ~ \delta=5.30(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.07(\mathrm{~s}, 2 \mathrm{H})$, $6.13(\mathrm{~d}, J=1.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.88(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.95(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.14(\mathrm{dd}, J=8.1,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.23$ (d, $J=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.33(\mathrm{~d}, J=1.4 \mathrm{~Hz}, 1 \mathrm{H}), 11.69(\mathrm{br} \mathrm{s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz, [D6]-DMSO): $\delta=89.6$, 101.1, 101.4, 106.0, 108.5, 118.0, 123.6, 129.7, 133.9, 148.0, 148.4, 159.4, 162.9, 170.1; IR (film): $\tilde{v}=$ 1699, 1631, 1606, 1555, 1499, 1479, 1443, 1357, 1299, 1254, 1241, 1157, 1100, 1036, 1009, 959, 924, 840, 815, 796, $683 \mathrm{~cm}^{-1}$; MS (EI) m/z (\%): 258 (100), 241 (7), 230 (6), 214 (21), 199 (11), 188 (45), 175 (30), 160 (25), 145 (25), 130 (16), 117 (16), 102 (12), 89 (35), 77 (6), 69 (26), 51 (10), 39 (11), 29 (5); HRMS (ESI): m / z : calcd. for $\mathrm{C}_{14} \mathrm{H}_{10} \mathrm{O}_{5} \mathrm{Na}\left[\mathrm{M}+\mathrm{Na}^{+}\right]$: 281.0420, found: 281.0421.

Compound S-6. $\mathrm{LiAlH}_{4}(4.15 \mathrm{~g}, 109.1 \mathrm{mmol})$ was added in portions to a cold $\left(0^{\circ} \mathrm{C}\right)$ solution of ester 27
 $(10.0 \mathrm{~g}, 54.5 \mathrm{mmol})$ in THF (200 mL). Stirring was continued for 2 h at $0^{\circ} \mathrm{C}$ before the mixture is allowed to reach ambient temperature. The reaction was carefully quenched by slow addition of water (4 mL) and aq. $\mathrm{NaOH}(15 \% \mathrm{w} / \mathrm{w}, 4 \mathrm{~mL})$. The resulting mixture was vigorously stirred for 1 h before the insoluble material was filtered off and carefully rinsed with EtOH (ca. 50 mL). The combined filtrates were evaporated and the residue was purified by distillation, collecting
the fraction boiling at $76-80^{\circ} \mathrm{C}$ (10 mbar). The product was thus obtained as a colorless liquid (7.56 g , $90 \%) .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=4.94(\mathrm{~d}, \mathrm{~J}=1.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.74(\mathrm{~d}, J=1.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.69(\mathrm{~b}, 1 \mathrm{H}), 3.61$ $(\mathrm{t}, \mathrm{J}=10.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.10(\mathrm{t}, J=6.4 \mathrm{~Hz}, 2 \mathrm{H}), 2.03(\mathrm{dd}, J=10.8 \mathrm{~Hz}, 4.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.62-1.48(\mathrm{~m}, 2 \mathrm{H}), 1.45-1.35$ $(\mathrm{m}, 2 \mathrm{H}), 1.29-1.22(\mathrm{~m}, 1 \mathrm{H}), 0.94(\mathrm{~s}, 3 \mathrm{H}), 0.85(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=147.5,111.7,59.6$, 56.4, 36.3, 33.8, 31.8, 29.8, 26.5, 23.1; MS (EI) m/z (\%): 139 (6) [${ }^{+}$- Me], 136 (36), 121 (62), 109 (34), 95 (25), 93 (83), 81 (54), 79 (30), 69 (100), 67 (34), 55 (26), 53 (12), 41 (52), 29 (11).

Compound S-7. Oxalyl chloride ($10.1 \mathrm{~mL}, 117.6 \mathrm{mmol}$) was added dropwise to a solution of DMSO ($13.9 \mathrm{~mL}, 196.1 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(120 \mathrm{~mL})$ at $-78^{\circ} \mathrm{C}$. The mixture was stirred for 15 min at this temperature before a solution of compound $\mathbf{S - 6}(12.1 \mathrm{~g}, 78.4 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL})$ was added over the course of 5 min . Stirring was continued at $-78^{\circ} \mathrm{C}$ for 3 h before $\mathrm{Et}_{3} \mathrm{~N}(44$ $\mathrm{mL}, 313.7 \mathrm{mmol}$) was introduced and the mixture allowed to reach ambient temperature. The reaction was then quenched with water (200 mL), the aqueous phase was repeatedly extracted with tert-butyl methyl ether, and the combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and evaporated.

The residue was dissolved in toluene (200 mL) and $\mathrm{Ph}_{3} \mathrm{P}=\mathrm{CC}(\mathrm{O}) \mathrm{Me}(34.9 \mathrm{~g}, 109.8 \mathrm{mmol})$ was added. The resulting mixture was stirred at reflux temperature for 16 h . After reaching ambient temperature, hexane (60 mL) was introduced and the precipitate was filtered off. The filtrate was evaporated and the residue purified by flash chromatography (hexanes/EtOAc, 20:1) to give the title compound as a colorless liquid ($10.1 \mathrm{~g}, 67 \%$). ${ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=6.93(\mathrm{dd}, J=15.8 \mathrm{~Hz}, 10.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.08(\mathrm{~d}, J=15.8 \mathrm{~Hz}, 1 \mathrm{H})$, $4.79(\mathrm{t}, \mathrm{J}=1.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.54(\mathrm{~s}, 1 \mathrm{H}), 2.58(\mathrm{~d}, \mathrm{~J}=10.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.31-2.21(\mathrm{~m}, 1 \mathrm{H}), 2.26(\mathrm{~s}, 3 \mathrm{H}), 2.11-2.01(\mathrm{~m}$, $1 \mathrm{H}), 1.63-1.55(\mathrm{~m}, 2 \mathrm{H}), 1.54-1.45(\mathrm{~m}, 1 \mathrm{H}), 1.40-1.29(\mathrm{~m}, 1 \mathrm{H}), 0.90(\mathrm{~s}, 3 \mathrm{H}), 0.86(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=198.2,148.3,147.1,132.7,109.6,57.5,38.6,35.5,34.1,29.2,27.2,23.9,23.1$; IR (film): $\tilde{v}=3077,2930,2867,1697,1672,1644,1624,1437,1386,1361,1252,1231,1176,1139,988$, 889, 849, $705 \mathrm{~cm}^{-1}$; MS (EI) m/z (\%): 192 (17) [M ${ }^{+}$], 177 (17), 164 (12), 149 (64), 135 (9), 121 (47), 109 (39), 93 (22), 81 (45), 69 (56), 65 (13), 53 (14), 43 (100), 27 (15).

Compound S-8. $\mathrm{Bu}_{3} \mathrm{SnH}(2.3 \mathrm{~mL}, 8.47 \mathrm{mmol})$ was added over 20 min to a solution of compound $\mathrm{S}-7$ (814 $\mathrm{mg}, 4.24 \mathrm{mmol}),\left(\mathrm{Ph}_{3} \mathrm{P}\right)_{2} \mathrm{PdCl}_{2}(150 \mathrm{mg}, 0.21 \mathrm{mmol}, 5 \mathrm{~mol} \%), \mathrm{NH}_{4} \mathrm{Cl}(522 \mathrm{mg}, 9.75 \mathrm{mmol})$
 and water ($206 \mathrm{mg}, 11.45 \mathrm{mmol}$) in THF (50 mL). The resulting mixture was stirred for 3 h before it was diluted with $\mathrm{Et}_{2} \mathrm{O}(50 \mathrm{~mL})$ and brine $(30 \mathrm{~mL})$. The organic phase was evaporated and the residue was dissolved in EtOAc (25 mL). An aq. sat. solution of NaF
(30 mL) was added and the resulting mixture was vigorously stirred for 5 h . Insoluble materials were then filtered off. The organic phase was separated and concentrated, and the residue was purified by flash chromatography (hexanes/EtOAc, 20:1) to give the title compound as a pale yellow liquid ($623 \mathrm{mg}, 76 \%$). ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=4.78(\mathrm{t}, J=1.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.49(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.38-2.31(\mathrm{~m}, 1 \mathrm{H}), 2.30-$ $2.24(\mathrm{~m}, 1 \mathrm{H}), 2.09(\mathrm{~s}, 3 \mathrm{H}), 2.02-1.94(\mathrm{~m}, 2 \mathrm{H}), 1.84-1.73(\mathrm{~m}, 1 \mathrm{H}), 1.71-1.64(\mathrm{~m}, 1 \mathrm{H}), 1.60-1.42(\mathrm{~m}, 4 \mathrm{H})$, 1.23-1.15 (m, 1H), $0.90(\mathrm{~s}, 3 \mathrm{H}), 0.86(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=209.3,149.0,109.4,53.4$, $42.3,35.7,34.8,32.0,30.1,28.2,26.5,23.5,20.2 ; \mathrm{MS}(E I) m / z(\%): 194$ (4) [$\left.\mathrm{M}^{+}\right], 176$ (31), 161 (29), 147 (2), 136 (100), 121 (70), 109 (28), 105 (51), 95 (52), 79 (32), 67 (13), 55 (13), 43 (56), 27 (5); HRMS (EI): m / z : calcd. 194.1669; found: 194.1671.

Compound 28. A solution of ethynylmagnesium bromide (0.5 M in THF, $9.6 \mathrm{~mL}, 4.8 \mathrm{mmol}$) was slowly
 added to a solution of compound S-8 (623 mg, 3.21 mmol) in THF (30 mL) at $0^{\circ} \mathrm{C}$. The ice bath was removed and the mixture stirred for 30 min . The reaction was quenched with sat. aq. $\mathrm{NH}_{4} \mathrm{Cl}(30 \mathrm{~mL})$, the aqueous phase was repeatedly extracted with EtOAc, the
combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and evaporated, and the residue was purified by flash chromatography (hexanes/EtOAc, 10:1) to give the title compound as a colorless liquid ($670 \mathrm{mg}, 95 \%$). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$, mixture of diastereoisomers): $\delta=4.78-4.73(\mathrm{~m}, 1 \mathrm{H}), 4.58-4.54(\mathrm{~m}, 1 \mathrm{H}), 2.43(\mathrm{~s}$, $1 \mathrm{H}), 2.078-1.87(\mathrm{~m}, 3 \mathrm{H}) ; 1.74-1.36(\mathrm{~m}, 8 \mathrm{H}), 1.48(\mathrm{~d}, \mathrm{~J}=0.8 \mathrm{~Hz}, 3 \mathrm{H}), 1.24-1.19(\mathrm{~m}, 1 \mathrm{H}), 0.93(\mathrm{~s}, 3 \mathrm{H})$, $0.86(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl_{3}): $\delta=149.1,109.13$ 109.1, 87.9, 87.8, 71.2, 68.22, 68.16, 54.1, 54.0, 42.2, 42.1, 36.23, 36.2, 35.0, 32.42, 32.37, 30.0, 29.7, 28.39, 28.38, 26.2, 23.65, 23.64, 21.20, 21.15. MS (EI) m/z (\%): 205 (5), 187 (27), 177 (4), 159 (18), 145 (17), 131 (30), 121 (30), 109 (47), 93 (50), 81 (42), 69 (100), 55 (32), 41 (61), 29 (10); HRMS (EI): m / z : calcd. for $\left[\mathrm{M}^{+}+\mathrm{H}\right]: 221.1903$; found: 221.1905.

Compound 29. A sealed flask containing a solution of compound $28(626 \mathrm{mg}, 2.84 \mathrm{mmol}),\left(\mathrm{Ph}_{3} \mathrm{SiO}\right)_{3} \mathrm{~V}=\mathrm{O}$
 $\left(127 \mathrm{mg}, 0.14 \mathrm{mmol}, 5 \mathrm{~mol} \%\right.$) and $\mathrm{Ph}_{3} \mathrm{SiOH}(24 \mathrm{mg}, 0.09 \mathrm{mmol}, 3 \mathrm{~mol} \%$) in toluene $(7.5 \mathrm{~mL})$ was heated in a microwave oven at $120^{\circ} \mathrm{C}$ for 1.5 h . For work up, all volatile materials were evaporated and the residue was purified by flash chromatography (hexanes/EtoAc, 20:1) to give the title compound as a pale yellow liquid ($509 \mathrm{mg}, 81 \%$). ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=9.89(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.85(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.83(\mathrm{~d}, J=1.0 \mathrm{~Hz}, 1 \mathrm{H})$, $4.57(\mathrm{~d}, \mathrm{~J}=1.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.09-2.01(\mathrm{~m}, 2 \mathrm{H}), 1.97(\mathrm{~s}, 3 \mathrm{H}), 1.77-1.39(\mathrm{~m}, 7 \mathrm{H}), 1.29-1.17(\mathrm{~m}, 2 \mathrm{H}), 0.93(\mathrm{~s}$, $3 \mathrm{H}), 0.84(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=190.9,165.1,148.6,128.4,109.7,53.8,36.2,34.9$, 32.4, 31.3, 28.3, 26.1, 25.6, 24.9, 23.6; MS (EI) m / z (\%): 220 (3) [$\left.{ }^{+}{ }^{+}\right], 205$ (24), 187 (11), 176 (61), 161 (39), 149 (9), 137 (36), 121 (36), 109 (58), 105 (34), 95 (74), 81 (100), 69 (89), 55 (43), 41 (89), 29 (17); HRMS (EI): m/z: calcd. 220.1828; found: 220.1827.

Compound 25. A solution of aldehyde $29(163 \mathrm{mg}, 0.74 \mathrm{mmol})$, acetic acid anhydride ($97 \mathrm{mg}, 0.96$ mmol) and piperidine ($82 \mathrm{mg}, 0.96 \mathrm{mmol}$) in EtOAc (35 mL) was stirred
 in a closed pressure flask at $85^{\circ} \mathrm{C}$ bath temperature for 1 h . A solution of pyrone 23 ($190 \mathrm{mg}, 0.74 \mathrm{mmol}$) in EtOAc (15 mL) was then added and stirring continued at $85^{\circ} \mathrm{C}$ for another 3 h . After reaching ambient temperature, the solvent was evaporated and the residue was purified by flash chromatography (hexanes/EtOAc, 10:1) to give the title compound as a 1:1 mixture of diastereomers in the form of a yellow solid ($280 \mathrm{mg}, 82 \%$). ${ }^{1} \mathrm{H} \mathrm{NMR}$ (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.41(\mathrm{~d}, J=15.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.00(\mathrm{~s}, 1 \mathrm{H}), 6.98(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.81(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H})$, $6.47(\mathrm{~d}, J=10.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.39(\mathrm{~d}, J=15.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.00(\mathrm{~s}, 2 \mathrm{H}), 5.90(\mathrm{~s}, 1 \mathrm{H}), 5.34(\mathrm{~d}, J=10.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.79$ $-4.73(\mathrm{~m}, 1 \mathrm{H}), 4.54(\mathrm{~d}, \mathrm{~J}=2.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.09-2.12(\mathrm{~m}, 2 \mathrm{H}), 1.80-1.33(\mathrm{~m}, 8 \mathrm{H}), 1.41(\mathrm{~s}, 3 \mathrm{H}), 1.27-1.16$ $(\mathrm{m}, 1 \mathrm{H}), 0.91(\mathrm{~s}, 3 \mathrm{H}), 0.82(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (101 MHz, $\left.\mathrm{CDCl}_{3}\right): \delta=164.3,164.2,161.8,158.9,149.11$, $149.08,149.0,148.5,135.3,129.9,124.6,124.4,123.7,117.3,117.10,117.06,109.4,109.3,108.8$, $105.9,101.6,100.81,100.78,99.3,83.2,83.0,54.21,54.15,40.6,40.5,36.4,36.2,35.14,35.07,32.6$, $32.4,28.50,28.48,27.7,27.5,26.4,26.2,23.72,23.70,20.5,20.4 ; \mathrm{MS}(E I) m / z(\%): 460(34)\left[\mathrm{M}^{+}\right], 337(3)$, 309 (100), 271 (11), 175 (11), 145 (6), 117 (3), 89 (3), 69 (3), 41 (4); HRMS (ESI): m/z: calcd. for [M ${ }^{+}+\mathrm{Na}$]: 483.2138; found: 483.2142.

Compound 26. $\mathrm{BCl}_{3}\left(1 \mathrm{M}\right.$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 250 \mu \mathrm{~L}, 0.25 \mathrm{mmol}$) was added to a solution of compound 25 (23 mg ,
 0.05 mmol) and the resulting mixture was stirred at $50^{\circ} \mathrm{C}$ for 16 h . After reaching ambient temperature, $\mathrm{MeOH}(1 \mathrm{~mL})$ was introduced and stirring continued for 1 h at $40^{\circ} \mathrm{C}$. Next, all volatile materials were evaporated and the residue was purified by flash chromatography (hexanes/acetone, 1:1) to give the product as an inseparable 1:1
mixture of diastereoisomers in the form of a yellow, sparingly soluble solid material ($8 \mathrm{mg}, 36 \%$). ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$): $\delta=7.29$ (d, $\left.J=15.9 \mathrm{~Hz}, 1 \mathrm{H}\right), 7.02(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.94$ (dd, $J=8.2,2.0 \mathrm{~Hz}$, $1 \mathrm{H}), 6.76(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.59(\mathrm{~d}, J=15.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.40(\mathrm{dd}, J=10.2,3.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.14(\mathrm{~d}, \mathrm{~J}=2.6 \mathrm{~Hz}$, $1 \mathrm{H}), 5.48(\mathrm{~d}, \mathrm{~J}=10.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.44(\mathrm{~d}, \mathrm{~J}=10.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.78-4.76(\mathrm{~m}, 1 \mathrm{H}), 4.58-4.54(\mathrm{~m}, 1 \mathrm{H}), 2.05-2.02$ $(\mathrm{m}, 1 \mathrm{H}), 1.79-1.38(\mathrm{~m}, 9 \mathrm{H}), 1.42(\mathrm{~s}, 3 \mathrm{H}), 1.26-1.18(\mathrm{~m}, 1 \mathrm{H}), 0.92(\mathrm{~s}, 3 \mathrm{H}), 0.82(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (150 $\left.\mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right): \delta=166.70,166.67,163.86,163.85,161.4,150.4,148.8,146.8,137.37,137.36,128.9$, 126.1, 125.9, 122.1, 117.4, 117.3, 116.83, 116.81, 116.6, 114.9, 110.0, 109.9, 101.1, 99.4, 84.6, 84.5, $55.43,55.42,41.62,41.59,37.3,37.2,35.9,35.8,33.4,33.3,28.84,28.83,27.9,27.8,26.7,24.7,21.6$, 21.5; MS (EI) m / z (\%): 471 (100) [M ${ }^{+}+$Na]; HRMS (ESI): m / z : calcd. for [M $\left.{ }^{+}+\mathrm{Na}\right]: 471.2146$; found: 471.2142.

The Radicinol Family

6-(4-Methylbenzenesulfonate)-phenyl-1-thio- β-d-glucopyranoside (S-9). Tosyl chloride ($10.50 \mathrm{~g}, 55.08$ ${ }^{\mathrm{OHO}} \mathrm{mmol}$) was added in one portion to a solution of compound $33(10.00 \mathrm{~g}, 57.06 \mathrm{mmol})$ in pyridine (65 mL) at $0^{\circ} \mathrm{C}$. The mixture was stirred for 13 h at $0^{\circ} \mathrm{C}$ before it was concentrated. The residue was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and the organic phase was washed with sat. aq. NaHCO_{3} and brine, dried over MgSO_{4} and evaporated. The residue was purified by flash chromatography $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{CH}_{3} \mathrm{OH}, 1: 0\right.$ to $\left.6: 1\right)$ to give the title compound as a white foam ($10.66 \mathrm{~g}, 68 \%$). $[a]_{\mathrm{D}}^{20}:-36.7\left(\mathrm{c}=1, \mathrm{CHCl}_{3}\right)^{1}{ }^{\mathrm{H}} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.84-7.78(\mathrm{~m}, 2 \mathrm{H}), 7.50-7.45(\mathrm{~m}, 2 \mathrm{H}), 7.36-$ $7.26(\mathrm{~m}, 5 \mathrm{H}), 4.46(\mathrm{~d}, \mathrm{~J}=9.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.36-4.27(\mathrm{~m}, 2 \mathrm{H}), 3.59-3.45(\mathrm{bm}, 3 \mathrm{H}), 3.32-3.24(\mathrm{~m}, 1 \mathrm{H}), 3.13$ - $2.98(\mathrm{bm}, 1 \mathrm{H}), 2.97-2.85(\mathrm{bm}, 1 \mathrm{H}), 2.71-2.60(\mathrm{bm}, 1 \mathrm{H}), 2.43(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=$ 145.2, 133.1, 132.8, 131.4, 130.1, 129.2, 238.5, 128.2, 88.0, 77.5, 77.2, 71.7, 69.2, 21.8. IR (film): $\tilde{v}=$ 3392, 1480, 1440, 1360, 1190, 1175, 1095, 1042, 1020, 973, 903, 814, 724, $650 \mathrm{~cm}^{-1}$. HRMS (ESI): m/z: calcd. for $\mathrm{C}_{19} \mathrm{H}_{22} \mathrm{O}_{7} \mathrm{~S}_{2} \mathrm{Na}^{+}: 449.06992$; found: 449.06992 .

6-(4-Methylbenzenesulfonate)-2,3,4-tris-O-benzyl-phenyl-1-thio- β-D-glucopyranoside (34). NaH (1.90 $\mathrm{g}, 79.14 \mathrm{mmol}$) was added in portions to a solution of compound $\mathrm{S}-9(8.27 \mathrm{~g}, 19.38 \mathrm{mmol})$ in DMF (100
 mL) at $0^{\circ} \mathrm{C}$. The mixture was stirred at $0^{\circ} \mathrm{C}$ for 1 h before benzyl bromide (10 mL , 171.04 mmol) was slowly added. Stirring was continued for 18 h at ambient temperature. For work up, the solvent was removed in vacuo and the residue was dissolved in tert-butyl methyl ether. The organic layer was washed with sat. aq. $\mathrm{NH}_{4} \mathrm{Cl}$ and brine, dried over MgSO_{4}, and evaporated. Purification of the residue by flash chromatography (hexanes/EtOAc, 5:1) afforded the title compound as a white solid ($11.75 \mathrm{~g}, 87 \%$). $[a]_{\mathrm{D}}^{20}$: -0.1 ($\left.\mathrm{c}=1, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H} \mathrm{NMR}(400 \mathrm{MHz}$, CDCl_{3}): $7.81-7.76(\mathrm{~m}, 2 \mathrm{H}), 7.53-7.45(\mathrm{~m}, 2 \mathrm{H}), 7.39-7.26(\mathrm{~m}, 18 \mathrm{H}), 7.21-7.16(\mathrm{~m}, 2 \mathrm{H}), 4.87(\mathrm{t}, \mathrm{J}=10.1$ $\mathrm{Hz}, 2 \mathrm{H}), 4.81(\mathrm{dd}, \mathrm{J}=10.9,2.5 \mathrm{~Hz}, 2 \mathrm{H}), 4.69(\mathrm{~d}, \mathrm{~J}=10.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.56(\mathrm{~d}, \mathrm{~J}=9.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.53(\mathrm{~d}, \mathrm{~J}=10.8$ $\mathrm{Hz}, 1 \mathrm{H}), 4.30-4.23(\mathrm{~m}, 1 \mathrm{H}), 4.20-4.15(\mathrm{~m}, 1 \mathrm{H}), 3.69-3.62(\mathrm{~m}, 1 \mathrm{H}), 3.54-3.46(\mathrm{~m}, 2 \mathrm{H}), 3.46-3.38(\mathrm{~m}$, $1 \mathrm{H}), 2.39(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=145.0,138.3,138.0,137.6,133.2,132.9,132.4,130.0$, 129.1, 128.7, 128.64, 128.60, 128.4, 128.3, 128.2, 128.1, 128.0, 127.91, 127.86, 87.4, 86.6, 80.6, 76.9, $76.6,76.0,75.6,75.3,68.5,21.8$. IR (film): $\tilde{v}=3063,3030,1598,1585,1454,1363,1190,1177,1093$, 1067, $1028 \mathrm{~cm}^{-1}$. HRMS (ESI): m/z: calcd. for $\mathrm{C}_{40} \mathrm{H}_{40} \mathrm{O}_{7} \mathrm{~S}_{2} \mathrm{Na}^{+}$: 719.21077; found: 719.21077.

6-Deoxy-2,3,4-tris-O-benzyl-phenyl-1-thio- β-D-glucopyranoside ($\mathrm{S}-10$). LiAlH 4 ($2.02 \mathrm{~g}, 53.16 \mathrm{mmol}$) was
 added in one portion to a solution of compound $\mathbf{3 4}(9.26 \mathrm{~g}, 13.29 \mathrm{mmol})$ in THF (133 mL) and the resulting mixture was stirred at reflux temperature for 2 h . After cooling to room temperature, the reaction was quenched by the careful addition of EtOAc and water. The aqueous phase was extracted with tert-butyl methyl ether, the combined extracts were washed with brine and dried over MgSO_{4}. The drying agent was filtered off and the solvent was evaporated. Purification of the residue by flash chromatography (hexanes/EtOAc, 10:1) afforded the title compound as a white solid ($6.23 \mathrm{~g}, 89 \%$). $[a]_{\mathrm{D}}^{20}:+10.8\left(\mathrm{c}=1, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=$ $7.58-7.52(\mathrm{~m}, 2 \mathrm{H}), 7.41-7.26(\mathrm{~m}, 18 \mathrm{H}), 4.94-4.82(\mathrm{~m}, 4 \mathrm{H}), 4.74(\mathrm{~d}, \mathrm{~J}=10.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.66(\mathrm{~d}, \mathrm{~J}=10.1 \mathrm{~Hz}$, $2 \mathrm{H}), 3.68(\mathrm{t}, \mathrm{J}=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.53-3.46(\mathrm{~m}, 1 \mathrm{H}), 3.45-3.38(\mathrm{~m}, 1 \mathrm{H}), 3.23(\mathrm{t}, \mathrm{J}=9.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.35(\mathrm{~d}, \mathrm{~J}=$ $6.1 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C} N \mathrm{NR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$: $\delta=138.5,138.2,134.0,132.0,129.1,128.6,128.6,128.4,128.2$, 128.03, 128.00, 127.9, 127.6, 87.6, 86.7, 83.4, 81.4, 76.0, 75.8, 75.6, 75.5, 18.3. IR (film): $\tilde{v}=3062,3030$, 2900, 2867, 1584, 1497, 1454, 1360, 1130, 1089, 1069, $737,697 \mathrm{~cm}^{-1}$. HRMS (ESI): m/z: calcd. for $\mathrm{C}_{33} \mathrm{H}_{34} \mathrm{O}_{4} \mathrm{SNa}^{+}: 549.20700$; found: 549.20700.

6-Deoxy-2,3,4-tris-O-benzyl-1-(phenylsulfinyl)- β-D-glucopyranoside (35a,b). A solution of m CPBA (1.25

$\mathrm{g}, 5.58 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(30 \mathrm{~mL})$ was added dropwise over 30 min to a solution of $\mathbf{S} \mathbf{- 1 0}$ $(2.10 \mathrm{~g}, 3.99 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(30 \mathrm{~mL})$ at $-20^{\circ} \mathrm{C}$. The resulting mixture was stirred at $-20^{\circ} \mathrm{C}$ for 12 h before the reaction was quenched with sat. aq. $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$. The mixture was warmed to RT and extracted with tert-butyl methyl ether. The combined extracts were washed with brine and dried over MgSO_{4}. The drying agent was filtered off and the solvent was evaporated. Purification of the residue by flash chromatography (hexanes/EtOAc, 5:1) afforded the diastereomeric sulfoxides $\mathbf{3 5 a}(730 \mathrm{mg})$ and $\mathbf{3 5 b}(1.31 \mathrm{~g})$ as white solids each $(94 \%$, d.r.: 1:1.8).

Analytical and spectral data of the minor isomer 35a: $[a]_{\mathrm{D}}^{20}:+21.4\left(\mathrm{c}=1, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H} \mathrm{NMR}(400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right): \delta=7.59(\mathrm{~m}, 2 \mathrm{H}), 7.46-7.21(\mathrm{~m}, 16 \mathrm{H}), 7.12(\mathrm{~m}, 2 \mathrm{H}), 4.82(\mathrm{~m}, 5 \mathrm{H}), 4.61(\mathrm{~d}, \mathrm{~J}=10.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.67(\mathrm{~m}$, $1 \mathrm{H}), 3.78(\mathrm{~m}, 2 \mathrm{H}), 3.52(\mathrm{~m}, 1 \mathrm{H}), 3.12(\mathrm{~m}, 1 \mathrm{H}), 1.31(\mathrm{~d}, \mathrm{~J}=6.1 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=$ $140.2,138.1,137.8,131.0,128.8,128.6,128.3,128.1,127.9,127.8,127.7,127.6,125.5,95.3,86.5,83.0$, $76.5,76.2,75.6,75.4,74.1,17.9$. IR (film): $\tilde{v}=3062,3030,2872,1497,1454,1360,1131,1086,1046$, 1029, 999, 735, $696 \mathrm{~cm}^{-1}$. HRMS (ESI): m / z : calcd. for $\mathrm{C}_{33} \mathrm{H}_{34} \mathrm{O}_{5} \mathrm{SNa}^{+}$: 565.20192 ; found: 565.20192.

Analytical and spectral data of the major isomer 35b: $[a]_{\mathrm{D}}^{20}:-83.0\left(\mathrm{c}=1, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H} \mathrm{NMR}(400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right): \delta=7.63(\mathrm{~m}, 2 \mathrm{H}), 7.50(\mathrm{~m}, 3 \mathrm{H}), 7.42-7.22(\mathrm{~m}, 15 \mathrm{H}), 4.99(\mathrm{q}, \mathrm{J}=9.9 \mathrm{~Hz}, 2 \mathrm{H}), 4.93(\mathrm{q}, \mathrm{J}=10.2 \mathrm{~Hz}$, $2 \mathrm{H}), 4.83(\mathrm{~d}, J=10.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.62(\mathrm{~d}, J=10.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.08(\mathrm{t}, J=9.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.88(\mathrm{~d}, J=10.9 \mathrm{~Hz}, 1 \mathrm{H})$, $3.74(\mathrm{t}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.28(\mathrm{t}, J=9.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.20(\mathrm{~m}, 1 \mathrm{H}), 1.11(\mathrm{~d}, \mathrm{~J}=6.1 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C} \mathrm{NMR}(101 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right): \delta=139.8,138.4,137.9,137.7,131.1,128.9,128.7,128.66,128.61,128.5,128.3,128.1,127.9$, 127.8, 125.4, 93.6, 86.5, 82.9, 77.2, 76.8, 76.0, 75.8, 75.5, 17.6. IR (film): $\tilde{v}=3063,3031,2873,1497$, 1445, 1361, 1211, 1136, 1088, 1049, 745, $697 \mathrm{~cm}^{-1}$. HRMS (ESI): m / z : calcd. for $\mathrm{C}_{33} \mathrm{H}_{34} \mathrm{O}_{5} \mathrm{SNa}^{+}$: 565.20192; found: 565.20192.

1,5-Anhydro-2,6-dideoxy-2-(2-trimethylsilyl-ethoxycarbonyl)-3,4-bis-O-benzyl-1-C-(phenylsulfinyl)-d-
 arabino-hex-1-enitol (37a). nBuLi (1.6 m in hexanes, $3.3 \mathrm{~mL}, 5.28 \mathrm{mmol}$) was added dropwise to a solution of diisopropylamine ($890 \mu \mathrm{~L}, 6.35 \mathrm{mmol}$) in THF (59 mL) at $0^{\circ} \mathrm{C}$ and the resulting mixture was stirred for 15 min at this temperature. The mixture was then cooled to $-78^{\circ} \mathrm{C}$ and a solution of $\mathbf{3 5 a}$ ($570 \mathrm{mg}, 1.05 \mathrm{mmol}$) in THF (117 mL) was added dropwise over 30 min . Stirring was continued at this temperature for 1 h before

HMPA ($183 \mu \mathrm{~L}, 1.05 \mathrm{mmol}$) was injected, followed by $\operatorname{TeocCl}(573 \mu \mathrm{~L}, 3.15 \mathrm{mmol})$. After stirring for an additonal 1.5 h at $-78^{\circ} \mathrm{C}$, the reaction was quenched with sat. aq. $\mathrm{NH}_{4} \mathrm{Cl}$, the mixture was warmed to room temperature and the aqueous layer extracted with tert-butyl methyl ether. The combined extracts were washed with brine and dried over MgSO_{4}. The drying agent was filtered off and the solvent was evaporated. Purification of the residue by flash chromatography (hexanes/EtOAc, 2:1) afforded product 37a as a colorless solid ($600 \mathrm{mg}, 99 \%$). $[a]_{\mathrm{D}}^{20}:-265.2\left(\mathrm{c}=1, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.98-$ $7.91(\mathrm{~m}, 2 \mathrm{H}), 7.51-7.42(\mathrm{~m}, 2 \mathrm{H}), 7.40-7.26(\mathrm{~m}, 9 \mathrm{H}), 7.22-7.14(\mathrm{~m}, 2 \mathrm{H}), 4.82-4.73(\mathrm{~m}, 1 \mathrm{H}), 4.61-$ $4.47(\mathrm{~m}, 4 \mathrm{H}), 4.45(\mathrm{dd}, J=2.5,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.36-4.21(\mathrm{~m}, 2 \mathrm{H}), 3.52(\mathrm{t}, \mathrm{J}=2.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.14-0.96(\mathrm{~m}$, $5 \mathrm{H}), 0.06$ (s, 9H). ${ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl_{3}): $\delta=165.9,165.7,143.4,138.0,137.5,131.0,129.0,128.7$, 128.6, 128.1, 128.05, 127.96, 127.9, 125.7, 106.8, 76.7, 75.0, 73.0, 72.5, 71.7, 63.8, 17.8, 14.9, -1.4. IR (film): $\tilde{v}=2952,1695,1600,1454,1381,1298,1250,1205,1140,1083,1055 \mathrm{~cm}^{-1}$. HRMS (ESI): m/z: calcd. for $\mathrm{C}_{32} \mathrm{H}_{38} \mathrm{O}_{6} \mathrm{SSiNa}^{+}$: 601.20506; found: 601.20506.

1,5-Anhydro-2,6-dideoxy-2-(2-trimethylsilyl-ethoxycarbonyl)-3,4-bis-O-benzyl-1-C-(phenylsulfinyl)-D-
 arabino-hex-1-enitol (37b, diastereomeric sulfoxide). Prepared analogously starting from 35b ($778 \mathrm{mg}, 1.43 \mathrm{mmol}$) as a colorless syrup ($796 \mathrm{mg}, 96 \%$). $[a]_{\mathrm{D}}^{20}:+71.5$ ($\mathrm{c}=1$, $\left.\mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.78(\mathrm{~m}, 2 \mathrm{H}), 7.40(\mathrm{tt}, J=7.3,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.36-$ $7.26(\mathrm{~m}, 10 \mathrm{H}), 7.03(\mathrm{~m}, 2 \mathrm{H}), 4.83(\mathrm{qt}, J=2.3,1.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.69(\mathrm{~d}, \mathrm{~J}=11.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.59$ (d, J = $11.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.42(\mathrm{~d}, J=11.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.33(\mathrm{~d}, J=11.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.29(\mathrm{t}, J=2.4 \mathrm{~Hz}$, $1 \mathrm{H}), 4.16(\mathrm{~m}, 2 \mathrm{H}), 3.58(\mathrm{t}, J=2.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.52(\mathrm{~d}, \mathrm{~J}=7.3 \mathrm{~Hz}, 3 \mathrm{H}), 0.96(\mathrm{~m}, 2 \mathrm{H}), 0.00(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 $\mathrm{MHz}, \mathrm{CDCl}_{3}$: $\delta=167.1,166.3,144.4,138.1,137.6,131.1,129.1,128.6,128.5,128.13,128.08,127.9$, 127.3, 126.6, 104.7, 77.7, 74.9, 73.2, 71.3, 71.2, 63.4, 17.6, 16.1, -1.4. IR (film): $\tilde{v}=3062,3030,2953$, 1694, 1597, 1454, 1298, 1261, 1207, 1073, $1056 \mathrm{~cm}^{-1}$. HRMS (ESI): m/z: calcd. for $\mathrm{C}_{32} \mathrm{H}_{38} \mathrm{O}_{6} \mathrm{SSiNa}^{+}$: 601.20506; found: 601.20506.

1,5-Anhydro-2,6-dideoxy-2-(2-trimethylsilyl-ethoxycarbonyl)-3,4-bis-O-benzyl-1-C-((E)-pent-3-en-1-

yn)-D-arabino-hex-1-enitol (39). This reaction was performed in the dark. nBuLi (1.6 M in hexanes, 3.00
 $\mathrm{mL}, 4.80 \mathrm{mmol})$ was added dropwise to a solution of (E)-1,1-dibromopenta-1,3diene ($537 \mathrm{mg}, 2.38 \mathrm{mmol})^{2}$ in THF $(3 \mathrm{~mL})$ at $-78^{\circ} \mathrm{C}$. The mixture was stirred at -78 ${ }^{\circ} \mathrm{C}$ and at $0^{\circ} \mathrm{C}$ for 1 h each. After re-cooling to $-78^{\circ} \mathrm{C}$, a solution of 37 a (275 mg , 0.48 mmol) in THF (3 mL) was added dropwise and stirring was continued at $-78^{\circ} \mathrm{C}$ for 30 min and at $-55^{\circ} \mathrm{C}$ for an additional 16 h . The reaction was quenched with sat. aq. $\mathrm{NH}_{4} \mathrm{Cl}$ while cold, the mixture was warmed to room temperature and the aqueous layer was extracted with tert-butyl methyl ether. The combined extracts were washed with brine and dried over MgSO_{4}. The drying agent was filtered off and the solvent was evaporated. Purification of the residue by flash chromatography (hexanes/EtOAc, 10:1) afforded the title compound as a yellow oil ($203 \mathrm{mg}, 82 \%$).

When applied to compound 37b ($248 \mathrm{mg}, 0.43 \mathrm{mmol}$), the same product was obtained in 85% yield (190 $\mathrm{mg}) .[a]_{\mathrm{D}}^{20}:-13.0\left(\mathrm{c}=1, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.37-7.26(\mathrm{~m}, 10 \mathrm{H}), 6.36(\mathrm{dq}, \mathrm{J}=15.7$, $6.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.69(\mathrm{dq}, J=15.7,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.69(\mathrm{~d}, J=11.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.64-4.55(\mathrm{~m}, 3 \mathrm{H}), 4.55-4.52(\mathrm{~m}$, $1 \mathrm{H}), 4.50-4.42(\mathrm{~m}, 1 \mathrm{H}), 4.31-4.20(\mathrm{~m}, 2 \mathrm{H}), 3.59(\mathrm{t}, \mathrm{J}=3.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.84(\mathrm{dd}, J=7.1,1.8 \mathrm{~Hz}, 3 \mathrm{H}), 1.40(\mathrm{~d}$, $J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 1.06-0.99(\mathrm{~m}, 2 \mathrm{H}), 0.04(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathrm{C} \mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=166.9,144.8,143.5$, $138.7,137.9,128.6,128.4,128.0,127.9,127.74,127.70,110.1,109.8,94.3,82.3,75.7,74.8,72.7,72.2$, 71.9, 62.7, 19.1, 17.7, 16.7, -1.4. IR (film): $\tilde{v}=2951,2208,1688,1594,1454,1381,1324,1249,1146$, $1069 \mathrm{~cm}^{-1}$. HRMS (ESI): m / z : calcd. for $\mathrm{C}_{31} \mathrm{H}_{38} \mathrm{O}_{5} \mathrm{SiNa}^{+}$: 541.23107; found: 541.23807.
(2R,3R,4S)-3-(Benzyloxy)-4-methoxy-2-methyl-7-((E)-prop-1-en-1-yl)-3,4-dihydro-2H,5H-pyrano[4,3-b]-pyran-5-one (42b, $\mathrm{R}=\mathrm{Me}$) and (2R,3R,4R)-3-(benzyloxy)-4-methoxy-2-methyl-7-((E)-prop-1-en-1-yl)-3,4-dihydro-2H,5H-pyrano[4,3-b]pyran-5-one (epi-42b, R = Me). SPhosAuNTf ($1.6 \mathrm{mg}, 0.002 \mathrm{mmol}, 1$ mol\%) was added to a solution of compound $39(100 \mathrm{mg}, 0.19 \mathrm{mmol})$ in $\mathrm{CH}_{3} \mathrm{OH}(1.85 \mathrm{~mL})$. The mixture was stirred for 2 h before conc. $\mathrm{HCl}(50 \mu \mathrm{~L}, 0.61 \mathrm{mmol})$ was added dropwise. Stirring was continued for 18 h . The reaction was quenched with sat. aq. $\mathrm{NH}_{4} \mathrm{Cl}$ and the aqueous layer extracted with tert-butyl methyl ether. The combined extracts were washed with brine and dried over MgSO_{4}. The drying agent was filtered off and the solvent was evaporated. Purification of the residue by flash chromatography (hexanes/EtOAc, 5:1) afforded 42b ($R=M e, 44 \mathrm{mg}, 67 \%$) and epi-42b ($R=M e, 16 \mathrm{mg}, 24 \%$).

Analytical and spectral data of $\mathbf{4 2 b}(\mathbf{R}=\mathbf{M e}):[a]_{\mathrm{D}}^{20}:+58.2\left(\mathrm{c}=1, \mathrm{CHCl}_{3}\right) \cdot{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right): \delta=7.41-7.28(\mathrm{~m}, 5 \mathrm{H}), 6.66(\mathrm{dq}, J=15.5,6.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.98(\mathrm{dq}$, $J=15.4,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.71(\mathrm{~s}, 1 \mathrm{H}), 4.80(\mathrm{~d}, J=11.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.56(\mathrm{~d}, J=11.6 \mathrm{~Hz}, 1 \mathrm{H})$, $4.55(\mathrm{~d}, J=3.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.29(\mathrm{dq}, J=10.4,6.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.55(\mathrm{~s}, 3 \mathrm{H}), 3.34(\mathrm{dd}, J=$ $10.2,2.9 \mathrm{~Hz}, 1 \mathrm{H}), 1.90(\mathrm{dd}, J=7.1,1.8 \mathrm{~Hz}, 3 \mathrm{H}), 1.45(\mathrm{~d}, \mathrm{~J}=6.6 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(101 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right): \delta=$ $166.2,164.1,159.4,138.1,135.5,128.8,128.3,128.2,123.2,99.04,98.99,78.0,72.1,71.6,67.3,59.0$, 18.6, 17.9. IR (film): $\tilde{v}=2930,1714,1660,1617,1572,1421,1262,1153,1110,1075 \mathrm{~cm}^{-1}$. HRMS (ESI): m / z : calcd. for $\mathrm{C}_{20} \mathrm{H}_{22} \mathrm{O}_{5} \mathrm{Na}^{+}$: 365.13591; found: 365.13594.

Analytical and spectral data of epi-42b ($\mathbf{R}=\mathbf{M e}$): $[a]_{\mathrm{D}}^{20}:-4.2\left(c=1, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.39-7.28(\mathrm{~m}, 5 \mathrm{H}), 6.70(\mathrm{dq}, \mathrm{J}=15.3,7.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.94$ (dq, $J=15.3,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.72(\mathrm{~s}, 1 \mathrm{H}), 4.73-4.57(\mathrm{~m}, 3 \mathrm{H}), 4.31(\mathrm{t}, J=2.2 \mathrm{~Hz}, 1 \mathrm{H})$, $3.71(\mathrm{t}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.48(\mathrm{~s}, 3 \mathrm{H}), 1.89(\mathrm{dd}, J=6.8,1.5 \mathrm{~Hz}, 3 \mathrm{H}), 1.40(\mathrm{~d}, J=7.1 \mathrm{~Hz}$, $3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=164.32,164.27,158.7,137.4,135.1,128.7,128.2,128.0,122.9,99.4$, 97.7, 75.5, 73.8, 71.6, 69.8, 57.9, 18.6, 16.9. IR (film): $\tilde{v}=3031,2934,1717,1660,1618,1572,1424$, 1212, 1152, 1082, $1023 \mathrm{~cm}^{-1}$. HRMS (ESI): m / z : calcd. for $\mathrm{C}_{20} \mathrm{H}_{22} \mathrm{O}_{5} \mathrm{Na}^{+}: 365.135910$; found: 365.135944.
(2R,3R,4S)-3-(Benzyloxy)-2-methyl-5-oxo-7-((E)-prop-1-en-1-yl)-3,4-dihydro-2H,5H-pyrano[4,3-b]-pyran-4-yl acetate (42a, $R=A c$) and ($2 R, 3 R, 4 R$)-3-(benzyloxy)-2-methyl-5-oxo-7-((E)-prop-1-en-1-yl)-3,4-dihydro-2H,5H-pyrano[4,3-b]pyran-4-yl acetate (epi-42a, R = Ac). SPhosAuNTf $(1.4 \mathrm{mg}, 0.002$ mmol, $1 \mathrm{~mol} \%$) was added to a solution of compound $39(80 \mathrm{mg}, 0.15 \mathrm{mmol})$ in glacial acetic acid (1.6 mL) and the resulting mixture was stirred for 1 h at room temperature. The reaction was quenched with sat. aq. NaHCO_{3} and the aqueous phase extracted with tert-butyl methyl ether. The combined extracts were washed with brine and dried over MgSO_{4}. The drying agent was filtered off and the solvent was evaporated. Purification of the residue by flash chromatography (hexanes/EtOAc, 5:1) afforded 42a ($\mathrm{R}=$ Ac, $42 \mathrm{mg}, 74 \%$) and epi-42a ($R=A c, 5 \mathrm{mg}, 9 \%$).

Analytical and spectral data of 42a ($\mathbf{R}=\mathbf{A c}$): $[a]_{\mathrm{D}}^{20}:+138.1\left(\mathrm{c}=1, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.38-7.28(\mathrm{~m}, 5 \mathrm{H}), 6.73(\mathrm{dq}, \mathrm{J}=15.2,7.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.37(\mathrm{~d}, \mathrm{~J}$ $=3.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.94(\mathrm{dq}, J=15.4,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.70(\mathrm{~s}, 1 \mathrm{H}), 4.88(\mathrm{~d}, J=11.4 \mathrm{~Hz}, 1 \mathrm{H})$, $4.48(\mathrm{~d}, J=11.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.30(\mathrm{dq}, J=10.4,6.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.40(\mathrm{dd}, J=10.1,3.5 \mathrm{~Hz}$, $1 \mathrm{H}), 2.09(\mathrm{~s}, 3 \mathrm{H}), 1.90(\mathrm{dd}, J=7.1,1.5 \mathrm{~Hz}, 3 \mathrm{H}), 1.42(\mathrm{~d}, J=6.3 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=$ 170.1, 166.9, 162.7, 159.7, 137.2, 136.2, 128.8, 128.6, 128.2, 122.8, 98.4, 96.8, 75.8, 72.19, 72.18, 59.9, 21.2, 18.6, 17.7. IR (film): $\tilde{v}=3064,3031,2936,1744,1720,1658,1616,1573,1425,1380,1224,1153$, $1010 \mathrm{~cm}^{-1}$. HRMS (ESI): m/z: calcd. for $\mathrm{C}_{21} \mathrm{H}_{22} \mathrm{O}_{6} \mathrm{Na}^{+}$: 393.13086; found: 393.13086.

Analytical and spectral data of epi-42a ($\mathbf{R}=\mathbf{A c}$): $[a]_{\mathrm{D}}^{20}:-26.2\left(\mathrm{c}=1, \mathrm{CHCl}_{3}\right) \cdot{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.38-7.27(\mathrm{~m}, 5 \mathrm{H}), 6.72(\mathrm{dq}, \mathrm{J}=15.3,7.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.96(\mathrm{dq}, \mathrm{J}$ $=15.7,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.89(\mathrm{t}, \mathrm{J}=2.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.75(\mathrm{~s}, 1 \mathrm{H}), 4.81(\mathrm{~d}, \mathrm{~J}=12.1 \mathrm{~Hz}, 1 \mathrm{H})$, $4.69(\mathrm{~d}, \mathrm{~J}=12.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.54(\mathrm{qt}, J=2.3,2.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.69(\mathrm{t}, \mathrm{J}=2.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.07$ (s, 3H), 1.90 (dd, J=7.0, $1.6 \mathrm{~Hz}, 3 \mathrm{H}$), $1.34(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=170.5,165.1$, $162.9,159.3,137.5,135.7,128.6,128.2,128.1,122.9,99.1,95.4,75.6,74.3,71.9,62.7,21.1,18.6,16.7$. IR (film): $\tilde{v}=2960,2936,1715,1660,1618,1575,1427,1372,1226,1153,1090,1023 \mathrm{~cm}^{-1}$. HRMS (ESI): m / z : calcd. for $\mathrm{C}_{21} \mathrm{H}_{22} \mathrm{O}_{6} \mathrm{Na}^{+}$: 393.13086; found: 393.13086.

(2R,3R,4R)-3,4-Bis(benzyloxy)-2-methyl-7-((E)-prop-1-en-1-yl)-3,4-dihydro-2H,5H-pyrano[4,3-b]-

pyran-5-one (40). SPhosAuNTf ${ }_{2}$ ($0.4 \mathrm{mg}, 0.0004 \mathrm{mmol}, 1 \mathrm{~mol} \%$) was added to a solution of compound $39(25 \mathrm{mg}, 0.048 \mathrm{mmol})$ in nitromethane $(0.4 \mathrm{~mL})$ and the resulting mixture was stirred for 24 h . The reaction was quenched with sat. aq. NaHCO_{3} and the aqueous phase was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined extracts were washed with brine and dried over MgSO_{4}. The drying agent was filtered off and the solvent was evaporated. Purification of the residue by flash chromatography (hexanes/EtOAc, 5:1) afforded the title compound (19 mg, 94\%). $[a]_{\mathrm{D}}^{20}:+13.7\left(\mathrm{c}=1, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=$ $7.38-7.27(\mathrm{~m}, 9 \mathrm{H}), 7.25-7.23(\mathrm{~m}, 1 \mathrm{H}), 6.71(\mathrm{dq}, J=15.3,7.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.95(\mathrm{dq}, J=15.5,1.5 \mathrm{~Hz}, 1 \mathrm{H})$, $5.73(\mathrm{~s}, 1 \mathrm{H}), 4.87(\mathrm{~d}, J=11.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.72(\mathrm{~d}, J=11.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.63-4.55(\mathrm{~m}, 3 \mathrm{H}), 4.46(\mathrm{~d}, J=12.1 \mathrm{~Hz}$, $1 \mathrm{H}), 3.68(\mathrm{t}, \mathrm{J}=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.90(\mathrm{dd}, J=7.1,1.5 \mathrm{~Hz}, 3 \mathrm{H}), 1.44(\mathrm{~d}, \mathrm{~J}=7.1 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta=164.4,164.3,158.7,138.8,137.6,135.1,128.7,128.5,128.13,128.08,127.9,127.7,123.0$, 99.4, 98.1, 75.7, 75.1, 73.9, 71.7, 68.3, 18.6, 17.2. IR (film): $\tilde{v}=3031,2934,1706,1660,1618,1573$, 1424, 1211, 1152, 1090, 1067, $1025 \mathrm{~cm}^{-1}$. HRMS (ESI): m/z: calcd. for $\mathrm{C}_{26} \mathrm{H}_{26} \mathrm{O}_{5} \mathrm{Na}^{+}$: 441.16750; found: 441.16724.

(2R,3S,4S)-3-(Benzyloxy)-4-hydroxy-2-methyl-7-((E)-prop-1-en-1-yl)-3,4-dihydro-2H,5H-pyrano[4,3-b]-

pyran-5-one ($\mathrm{S}-11$). $\mathrm{K}_{2} \mathrm{CO}_{3}(109 \mathrm{mg}, 0.79 \mathrm{mmol})$ was added in one portion to a solution of 42a ($\mathrm{R}=\mathrm{Ac}, 29 \mathrm{mg}, 0.08 \mathrm{mmol}$) in $\mathrm{MeOH} / \mathrm{H}_{2} \mathrm{O}(1: 1,0.9 \mathrm{~mL})$ and the resulting mixture was stirred at room temperature for 18 h . The mixture was diluted with water and the aqueous phase extracted with EtOAc. The combined extracts were washed with brine and dried over MgSO_{4}. The drying agent was filtered off and the solvent was evaporated. Purification of the residue by flash chromatography (pentanes/EtOAc, 2:1) afforded the title compound as a colorless oil ($23 \mathrm{mg}, 90 \%$). $[a]_{\mathrm{D}}^{20}:+61.7$ ($\mathrm{c}=1, \mathrm{CHCl}_{3}$). ${ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.40-7.30(\mathrm{~m}, 5 \mathrm{H}), 6.72(\mathrm{dq}, J=15.1,7.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.94(\mathrm{dq}, J=15.5,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.71(\mathrm{~s}$, $1 \mathrm{H}), 4.94(\mathrm{~d}, J=3.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.82(\mathrm{~d}, J=11.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.61(\mathrm{~d}, J=11.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.40(\mathrm{dq}, J=9.9,6.3 \mathrm{~Hz}$, $1 \mathrm{H}), 3.77(\mathrm{dd}, J=9.8,3.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.74(\mathrm{bs}, 1 \mathrm{H}), 1.89(\mathrm{dd}, J=6.8,1.5 \mathrm{~Hz}, 3 \mathrm{H}), 1.46(\mathrm{~d}, J=6.3 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl_{3}): $\delta=166.1,164.1,159.3,137.1,135.8,128.8,128.4,128.3,122.8,99.8,98.7,76.8$, 71.6, 71.4, 58.7, 18.6, 17.5. IR (film): $\tilde{v}=3443,2932,1690,1659,1617,1572,1428,1265,1151,1086$, $1056 \mathrm{~cm}^{-1}$. HRMS (ESI): m / z : calcd. for $\mathrm{C}_{19} \mathrm{H}_{20} \mathrm{O}_{5} \mathrm{Na}^{+}$: 351.12029; found: 351.12029.
(2R,3S,4R)-3-(Benzyloxy)-4-hydroxy-2-methyl-7-((E)-prop-1-en-1-yl)-3,4-dihydro-2H,5H-pyrano[4,3-b]-

pyran-5-one (S-12). Prepared analogously from compound epi-42a ($\mathrm{R}=\mathrm{Ac}, 14 \mathrm{mg}$, 0.04 mmol); colorless oil ($12 \mathrm{mg}, 97 \%$). $[a]_{\mathrm{D}}^{20}:+12.6$ ($\mathrm{c}=1, \mathrm{CHCl}_{3}$). ${ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.41-7.29(\mathrm{~m}, 5 \mathrm{H}), 6.71(\mathrm{dq}, J=15.0,7.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.96(\mathrm{dq}, J=$ $15.6,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.76(\mathrm{~s}, 1 \mathrm{H}), 5.01(\mathrm{~d}, \mathrm{~J}=11.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.83(\mathrm{~d}, \mathrm{~J}=6.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.76(\mathrm{~d}, \mathrm{~J}=11.4 \mathrm{~Hz}, 1 \mathrm{H})$,
$4.18(\mathrm{dq}, J=8.1,6.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.18-4.03(\mathrm{bs}, 1 \mathrm{H}), 3.55(\mathrm{dd}, J=8.3,6.1 \mathrm{~Hz}, 1 \mathrm{H}), 1.91(\mathrm{dd}, J=6.8,1.5 \mathrm{~Hz}$, $3 \mathrm{H}), 1.46(\mathrm{~d}, \mathrm{~J}=6.6 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=164.7,164.3,158.7,138.0,135.6,128.6$, $128.3,128.0,122.7,101.2,99.0,78.8,75.7,73.9,67.6,18.6,17.4$. IR (film): $\tilde{v}=3460,2927,1687,1573$, 1428, 1378, 1322, 1276, 1211, 1154, 1096, $1021 \mathrm{~cm}^{-1}$. HRMS (ESI): m/z: calcd. for $\mathrm{C}_{19} \mathrm{H}_{20} \mathrm{O}_{5} \mathrm{Na}^{+}$: 351.12029; found: 351.12029.
(+)-3-Methoxy-3-epi-radicinol (ent-32). $\mathrm{BCl}_{3}\left(1 \mathrm{M}\right.$ in $\left.\mathrm{CH}_{2} \mathrm{Cl}_{2}, 0.2 \mathrm{~mL}, 0.2 \mathrm{mmol}\right)$ was added dropwise to a
 solution of 42 b ($\mathrm{R}=\mathrm{Me}, 22 \mathrm{mg}, 0.06 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.6 \mathrm{~mL})$ at $-78^{\circ} \mathrm{C}$. The mixture was stirred for 1 h at $-78^{\circ} \mathrm{C}$ before the reaction was quenched with methanol and sat. aq. $\mathrm{NH}_{4} \mathrm{Cl}$. The aqueous layer was extracted with EtOAc and the combined extracts were washed with brine and dried over MgSO_{4}. The drying agent was filtered off and the solvent was evaporated. Purification of the residue by flash chromatography (pentanes/EtOAc, 5:1) afforded ent-32 as a colorless oil ($8 \mathrm{mg}, 72 \%$). $[a]_{\mathrm{D}}^{20}:+43.5$ ($\mathrm{c}=0.5, \mathrm{CHCl}_{3}$) [Lit. ${ }^{12}$ for 32: $[a]_{\mathrm{D}}:-65$ (c $=$ 5.8, CHCl_{3})]; for the NMR-spectroscopic data, see Table S-1; IR (film): $\tilde{v}=3428,2926,2855,1709,1572$, 1426, 1366, 1261, 1203, 1082, $1063 \mathrm{~cm}^{-1}$. HRMS (ESI): m/z: calcd. for $\mathrm{C}_{13} \mathrm{H}_{16} \mathrm{O}_{5} \mathrm{Na}^{+}$: 275.08892; found: 275.08899.

Table S-1. Assigned spectral data ($\mathrm{CDCl}_{3}, 500 \mathrm{MHz} / \mathbf{1 2 6}$ MHz) of 3-methoxy-3-epi-radicinol (ent-32) and graphical representation of key NOE contacts; arbitrary numbering scheme as shown in the Insert. The comparison with the literature data for the enantiomer (32) show certain discrepancies, thus
 raising questions as to the original structure assignment of the natural metabolite

Position	${ }^{13} \mathrm{C}$ NMR		${ }^{1} \mathrm{H}$ NMR	
	synthetic ent-32	lit 13 for 32	synthetic ent-32	lit ${ }^{13}$ for 32
1	166.6	165.4		
2	98.5	99.1		
3	69.7	68.0	4.40 (d, J = 3.8 Hz, 1H)	4.33 (d, J = 3.8 Hz, 1H)
4	70.0	72.5	3.44 (dd, $J=10.4,3.5 \mathrm{~Hz}, 1 \mathrm{H})$	3.40 (dt, J = 8.2, 3.8 Hz, 1H)
5	73.2	76.8	4.14 (dq, J = 10.4, 6.4 Hz, 1H)	4.12 (dq, J = 8.2, $6.9 \mathrm{~Hz}, 1 \mathrm{H})$
6	164.3	n.r.		
7	98.8	100.4	5.71 (s, 1H)	5.68 (s, 1H)
8	159.3	158.9		
9	122.8	122.7	5.95 (dq, $J=15.4,1.6 \mathrm{~Hz}, 1 \mathrm{H})$	5.90 ($\mathrm{d}, \mathrm{J}=13.9 \mathrm{~Hz}, 1 \mathrm{H})$
10	135.8	135.7	6.73 (dq, J = 15.4, 7.0 Hz, 1H)	6.68 (dq, J = 13.9, $7.5 \mathrm{~Hz}, 1 \mathrm{H}$)
11	18.6	18.4	1.90 (dd, $J=7.0,1.6 \mathrm{~Hz}, 3 \mathrm{H})$	1.86 (d, J = 7.5 Hz, 3H)
12	17.7	17.1	1.48 (d, J = $6.3 \mathrm{~Hz}, 3 \mathrm{H})$	1.38 (d, J = 6.9 Hz, 3H)
13	59.1	55.2	3.61 (s, 3H)	3.65 (s, 3H)
OH			2.64 (bs, 1H)	2.50 (bs, 1H)

[^8](+)-3-Methoxy-radicinol (S-13). Prepared analogously starting from 42b ($\mathrm{R}=\mathrm{Me}, 15 \mathrm{mg}, 0.04 \mathrm{mmol}$); colorless oil ($7.6 \mathrm{mg}, 69 \%$). $[a]_{\mathrm{D}}^{20}:+40.8\left(\mathrm{c}=1, \mathrm{CHCl}_{3}\right)$. For the NMR-spectroscopic
 data, see Table S-2; IR (film): $\tilde{v}=3402,2934,1682,1659,1617,1569,1427,1152$, 1084, $1021 \mathrm{~cm}^{-1}$. HRMS (ESI): m/z: calcd. for $\mathrm{C}_{13} \mathrm{H}_{16} \mathrm{O}_{5} \mathrm{Na}^{+}$: 275.08906; found: 275.08899.

Table S-2. Assigned spectral data ($\mathrm{CDCl}_{3}, 500 \mathrm{MHz} / 126$ MHz) of 3-methoxy-radicinol (S-13) and graphical representation of key NOE contacts; arbitrary numbering scheme as shown in the Insert

Position	${ }^{13} \mathbf{C}$ NMR	${ }^{1} \mathbf{H}$ NMR
1	164.7	
2	97.6	$4.21(\mathrm{dd}, \mathrm{J}=3.3,1.5 \mathrm{~Hz}, 1 \mathrm{H})$
3	73.0	$4.03(\mathrm{t}, \mathrm{J}=3.3 \mathrm{~Hz}, 1 \mathrm{H})$
4	68.5	$4.50(\mathrm{qdd}, \mathrm{J}=7.0,3.1,1.7 \mathrm{~Hz}, 1 \mathrm{H})$
5	77.4	$5.72(\mathrm{~s}, 1 \mathrm{H})$
6	164.1	
7	99.2	$5.94(\mathrm{dq}, \mathrm{J}=15.4,1.6 \mathrm{~Hz}, 1 \mathrm{H})$
8	158.9	$6.70(\mathrm{dq}, J=15.4,7.0 \mathrm{~Hz}, 1 \mathrm{H})$
9	122.8	$1.89(\mathrm{dd}, J=7.0,1.6 \mathrm{~Hz}, 3 \mathrm{H})$
10	135.5	$1.45(\mathrm{~d}, \mathrm{~J}=7.1 \mathrm{~Hz}, 3 \mathrm{H})$
11	18.6	$3.56(\mathrm{~s}, 3 \mathrm{H})$
12	16.7	58.3

(+)-3-epi-Radicinol (ent-29). $\mathrm{BCl}_{3}\left(1 \mathrm{M}\right.$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 0.17 \mathrm{~mL}, 0.17 \mathrm{mmol}$,) was added to a solution of S-11 ($17 \mathrm{mg}, 0.05 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.5 \mathrm{~mL})$ at $-78^{\circ} \mathrm{C}$ and the resulting mixture was
 stirred for 1.5 h at this temperature. The reaction was quenched with sat. aq. $\mathrm{NH}_{4} \mathrm{Cl}$ and the aqueous layer was extracted with EtOAc. The combined organic extracts were washed with brine and dried over MgSO_{4}. The drying agent was filtered off and the solvent was evaporated. Purification of the residue by flash chromatography (pentanes/EtOAc, 1:1) afforded the title compound as a colorless oil ($11 \mathrm{mg}, 91 \%$). $[a]_{\mathrm{D}}^{20}:+13.0$ (c = 1, CHCl_{3}) [Lit. ${ }^{14}$ for 29: $\left.[a]_{\mathrm{D}}^{25}:-10.7\left(\mathrm{c}=0.0014, \mathrm{CHCl}_{3}\right)\right] .{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=6.71(\mathrm{dq}, \mathrm{J}=15.3,7.0$ $\mathrm{Hz}, 1 \mathrm{H}), 5.96(\mathrm{dq}, J=15.4,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.76(\mathrm{~s} 1 \mathrm{H}), 4.76(\mathrm{~d}, J=4.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.28(\mathrm{dq}, J=8.1,6.6 \mathrm{~Hz}, 1 \mathrm{H})$, 3.76 (bs, 1H), 3.65 (dt, $J=7.6,4.3 \mathrm{~Hz}, 1 \mathrm{H}$), $2.98(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.90(\mathrm{dd}, J=7.1,1.5 \mathrm{~Hz}, 3 \mathrm{H}), 1.45$ (d, J $=6.6 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{CNMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=165.6,164.6,135.9,122.7,100.0,99.1,74.0,69.3,60.9$, 18.6, 17.0. IR (film): $\tilde{v}=3444,2924,2854,1688,1572,1429,1378,1262,1159,1053 \mathrm{~cm}^{-1}$. HRMS (ESI): m / z : calcd. for $\mathrm{C}_{12} \mathrm{H}_{14} \mathrm{O}_{5} \mathrm{Na}^{+}$: 261.07334; found: 261.07334.

[^9](+)-Radicinol (ent-27). $\mathrm{BCl}_{3}\left(1 \mathrm{M}\right.$ in $\left.\mathrm{CH}_{2} \mathrm{Cl}_{2}, 0.18 \mathrm{~mL}, 0.18 \mathrm{mmol}\right)$ was added dropwise to a solution of
 compound $40(25 \mathrm{mg}, 0.06 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.6 \mathrm{~mL})$ at $-78^{\circ} \mathrm{C}$ and the resulting mixture was stirred for 3 h at this temperature. The reaction was quenched with sat. aq. $\mathrm{NH}_{4} \mathrm{Cl}$ and the aqueous layer was extracted with EtOAc. The combined extracts were washed with brine and dried over MgSO_{4}. The drying agent was filtered off and the solvent was evaporated. Purification of the residue by flash chromatography (pentanes/EtOAc, 1:1) afforded the title compound (14 mg, 88\%). $[a]_{\mathrm{D}}^{20}:+46.9$ ($\mathrm{c}=1, \mathrm{CHCl}_{3}$) [Lit. ${ }^{15}$ for 27: $[a]_{\mathrm{D}}^{28}:-92$ (c = 0.48, $\left.\left.\mathrm{CHCl}_{3}\right)\right] .{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=6.71(\mathrm{dq}, J=15.3,7.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.96(\mathrm{dq}, J=15.6,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.76$ (s, 1H), $4.63(d, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.59(\mathrm{bs}, 1 \mathrm{H}), 4.11(\mathrm{dq}, J=9.1,6.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.66(\mathrm{dd}, J=9.5,7.7 \mathrm{~Hz}, 1 \mathrm{H})$, 3.01 (bs, 1H), 1.90 (dd, $J=7.0,1.6 \mathrm{~Hz}, 3 \mathrm{H}), 1.51(\mathrm{~d}, J=6.3 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=165.1$, 164.2, 158.9, 135.8, 122.6, 100.4, 98.9, 76.3, 73.1, 68.5, 18.6, 17.2. IR (film): $\tilde{v}=3410,2953,2924,2854$, 1683, 1617, 1570, 1428, 1378, 1277, 1157, 1055, $1019 \mathrm{~cm}^{-1}$. HRMS (ESI): m/z: calcd. for $\mathrm{C}_{12} \mathrm{H}_{14} \mathrm{O}_{5} \mathrm{Na}^{+}$: 261.07334; found: 261.07334.

Preparation of N-Heterocycles

Compound 53. [(Johnphos)Au]SbF ${ }_{6}$ ($0.005 \mathrm{mmol}, 4.0 \mathrm{mg}, 5 \mathrm{~mol} \%$) was added to a solution of compound 52 ($36 \mathrm{mg}, 0.1 \mathrm{mmol}$) in acetic acid $(0.5 \mathrm{~mL})$ and the resulting mixture was stirred for 24 h . The solvent was distilled off and the residue purified by flash chromatography (hexanes/tert-butyl methyl ether, 1:1) to yield the title compound as a white waxy solid ($24.0 \mathrm{mg}, 66 \%$). ${ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$): $\delta=8.31$ (d, $1 \mathrm{H}, J=7.6 \mathrm{~Hz}$), 7.94 (d, $2 \mathrm{H}, J=8.3 \mathrm{~Hz}), 7.64(\mathrm{td}, 1 \mathrm{H}, J=7.8$ and 1.3 Hz$), 7.40(\mathrm{t}, 1 \mathrm{H}, J=7.8 \mathrm{~Hz}), 7.30-7.26(\mathrm{~m}$, $3 \mathrm{H}), 6.31(\mathrm{~s}, 1 \mathrm{H}), 2.47(\mathrm{t}, 2 \mathrm{H}, \mathrm{J}=7.4 \mathrm{~Hz}), 2.39(\mathrm{~s}, 3 \mathrm{H}), 1.59$ (quint, $2 \mathrm{H}, \mathrm{J}=7.6 \mathrm{~Hz}), 1.41-1.31(\mathrm{~m}, 2 \mathrm{H}), 0.92$ ($\mathrm{t}, 3 \mathrm{H}, \mathrm{J}=7.3 \mathrm{~Hz}$); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=159.9,157.6,142.9,139.3,135.5,135.3,129.1,128.9$, $128.3,127.3,125.1,120.2,104.5,32.4,28.8,22.1,21.5,13.6$; IR (film): $\tilde{v}=2960,1703,1355,1257$, 1167, 1087, 1034, 814, 703, 658, $569 \mathrm{~cm}^{-1}$; MS (EI) $m / z(\%): 1088,733,378 ;$ HRMS (ESI): m / z : calcd. for $\mathrm{C}_{20} \mathrm{H}_{21} \mathrm{NO}_{3} \mathrm{SNa}\left[M^{+}+\mathrm{Na}\right]: 378.11343$, found 378.11378.

Compound 55. Prepared analogously starting from compound 54 and using $\mathrm{MeNO}_{2} /$ water (4:1) as the
 solvent; white solid ($54 \mathrm{mg}, 80 \%$). $\mathrm{Mp}=112-114{ }^{\circ} \mathrm{C} ;[\alpha]_{20}^{D}=+209.3\left(\mathrm{c}=0.89, \mathrm{CHCl}_{3}\right.$); ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=8.31(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=8.1 \mathrm{~Hz}), 7.63(\mathrm{t}, 1 \mathrm{H}, \mathrm{J}=7.6 \mathrm{~Hz}), 7.47(\mathrm{~d}$, $1 \mathrm{H}, J=7.9 \mathrm{~Hz}), 7.41(\mathrm{t}, 1 \mathrm{H}, J=8.1 \mathrm{~Hz}), 7.33-7.30(\mathrm{~m}, 2 \mathrm{H}), 7.26-7.22(\mathrm{~m}, 3 \mathrm{H}), 6.46(\mathrm{~s}$, $1 \mathrm{H}), 5.61(\mathrm{br} . \mathrm{s}, 1 \mathrm{H}), 4.72-4.67(\mathrm{~m}, 1 \mathrm{H}), 4.45(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}=12.0,3.4 \mathrm{~Hz}), 2.70-2.64(\mathrm{~m}$, $2 \mathrm{H}), 1.65-1.59(\mathrm{~m}, 2 \mathrm{H}), 1.42(\mathrm{sext}, 2 \mathrm{H}, \mathrm{J}=7.3 \mathrm{~Hz}), 0.93(\mathrm{t}, 3 \mathrm{H}, J=7.4 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=$ $164.6,143.8,137.2,136.7,132.6,128.5,127.9,127.1,126.2,126.1,125.1,106.8,64.0,62.4,33.7,31.0$, 22.3, 13.7; IR (film): $\tilde{v}=3448,2960,2928,2861,1647,1617,1592,1457,1378,1301,1162,1046,988$, 749, 725, 696, $574 \mathrm{~cm}^{-1}$; MS (EI) m/z (\%): 322 (5), 321 (14), 303 (10), 274 (5), 262 (9), 261 (39), 260 (7), 246 (5), 202 (36), 201 (11), 172 (9), 160 (11), 159 (100), 158 (12), 142 (7), 131 (9), 130 (7), 120 (5), 116 (7), 115 (8), 103 (14), 91 (15), 89 (5), 77 (7), 31 (6); HRMS (ESI): m/z: calcd. for $\mathrm{C}_{21} \mathrm{H}_{23} \mathrm{NO}_{2} \mathrm{Na}\left[M^{+}+\mathrm{Na}\right]$: 344.16210, found 344.16195 .

[^10]
Representative Procedure for the Synthesis of 1-Alkoxyisoquinolines. 3-Butyl-1-ethoxyisoquinoline

(58). Triethyloxonium tetrafluoroborate ($1.14 \mathrm{~g}, 6 \mathrm{mmol}$) was added to a solution of
 2-(hex-1-yn-1-yl)benzamide ($1.208 \mathrm{~g}, 6 \mathrm{mmol}$) in dichloromethane (30 mL). The resulting mixture was stirred overnight and then concentrated. The residue was taking up with tert-butyl methyl ether (60 mL) and triethylamine (9 mL) was added (if necessary, a little bit of dichloromethane can be added to help solubilize the intermediate imidate). The mixture was stirred for 10 min before it was filtered through a plug of cotton which was carefully rinsed with tert-butyl methyl ether. The combined filtrates were evaporated and the resulting imidate dissolved in chloroform (30 mL). This solution was added to a solution of AgOTs (83.7 $\mathrm{mg}, 0.3 \mathrm{mmol}, 5 \mathrm{~mol} \%$) and DMEDA ($26.4 \mathrm{mg}, 0.3 \mathrm{mmol}, 5 \mathrm{~mol} \%$) in chloroform (15 mL) at $0^{\circ} \mathrm{C}$. The ice bath was removed and the mixture allowed to stir at ambient temperature overnight. The mixture was filtered through a plug of silica, which was rinsed with tert-butyl methyl ether. The combined filtrates were evaporated and the residue was purified by flash chromatography (hexane/tert-butyl methyl ether, $94: 4$) to afford the title compound as a colorless oil ($1.102 \mathrm{~g}, 80 \%$). ${ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=$ $8.18(\mathrm{~d}, 1 \mathrm{H}, J=8.3 \mathrm{~Hz}), 7.61(\mathrm{~d}, 1 \mathrm{H}, J=8.0 \mathrm{~Hz}), 7.55(\mathrm{td}, 1 \mathrm{H}, J=6.7,1.2 \mathrm{~Hz}), 7.40(\mathrm{ddd}, 1 \mathrm{H}, J=8.2,6.8,1.3$ Hz), $6.97(\mathrm{~s}, 1 \mathrm{H}), 4.55(\mathrm{q}, 2 \mathrm{H}, J=7.1 \mathrm{~Hz}$), $2.74(\mathrm{t}, 2 \mathrm{H}, J=7.5 \mathrm{~Hz}$), 1.74 (quint, $2 \mathrm{H}, J=7.5 \mathrm{~Hz}$), $1.47(\mathrm{t}, 3 \mathrm{H}, J=$ 7.0 Hz), 1.38 (sext, $2 \mathrm{H}, J=7.6 \mathrm{~Hz}$), $0.94\left(\mathrm{t}, 3 \mathrm{H}, J=7.4 \mathrm{~Hz}\right.$); ${ }^{13} \mathrm{C} \mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=159.9,153.1$, 138.6, 130.0, 125.6, 125.3, 124.1, 118.1, 111.5, 61.6, 37.6, 31.5, 22.4, 14.6, 14.0; IR (film): $\tilde{v}=2955$, 2929, 2859, 1628, 1572, 1497, 1407, 1376, 1318, 1155, 1104, 1024, 838, 750, $670 \mathrm{~cm}^{-1}$; MS (EI) $\mathrm{m} / \mathrm{z}(\%):$ 229 (22), 214 (22), 201 (6), 200 (14), 188 (14), 187 (100), 186 (9), 172 (10), 160 (7), 159 (68), 158 (25), 143 (5), 142 (5), 131 (12), 130 (7), 128 (5), 116 (8), 115 (11), 103 (10), 89 (10), 77 (5), 29 (9), 27 (6); HRMS (ESI): m / z : calcd. for $\mathrm{C}_{15} \mathrm{H}_{20} \mathrm{NO}\left[M^{+}+H\right]$: 230.15394, found 230.15413 .

The minor isomer (59) analyzed as follows: colorless oil. ${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=$
 $7.62(\mathrm{~d}, 1 \mathrm{H}, J=7.5 \mathrm{~Hz}), 7.51(\mathrm{~d}, 1 \mathrm{H}, J=7.4 \mathrm{~Hz}), 7.37(\mathrm{td}, 1 \mathrm{H}, J=7.3,1.1 \mathrm{~Hz}), 7.29$ (td, $1 \mathrm{H}, J=7.4,1.0 \mathrm{~Hz}), 6.16(\mathrm{t}, 1 \mathrm{H}, J=7.7 \mathrm{~Hz}), 4.59(\mathrm{q}, 2 \mathrm{H}, J=7.1 \mathrm{~Hz}), 2.72(\mathrm{q}, 2 \mathrm{H}, J=7.4$ $\mathrm{Hz}), 1.59-1.35(\mathrm{~m}, 4 \mathrm{H}), 1.46(\mathrm{t}, 3 \mathrm{H}, \mathrm{J}=7.1 \mathrm{~Hz}), 0.94(\mathrm{t}, 3 \mathrm{H}, \mathrm{J}=7.2 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR (75 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=170.7,146.2,141.5,131.3,128.9,127.0,124.5,119.8,119.1,64.4$, 31.7, 27.5, 22.4, 14.6, 13.9; IR (film): $\tilde{v}=2955,2926,2857,1540,1406,1377,1340,1140,1091,1023$, 881, 757, $686 \mathrm{~cm}^{-1}$; MS (EI) m/z (\%): 229 (9), 201 (8), 200 (48), 188 (5), 187 (37), 186 (11), 172 (7), 159 (13), 158 (100), 146 (16), 145 (13), 131 (7), 130 (16), 129 (5), 128 (5), 115 (7), 103 (11), 102 (6), 77 (6), 76 (5); HRMS (ESI): m / z : calcd. for $\mathrm{C}_{15} \mathrm{H}_{19} \mathrm{NONa}\left[M^{+}+N a\right]: 252.13588$, found 252.13606 .

Colorless oil ($33 \mathrm{mg}, 77 \%$). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=8.18(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=8.2 \mathrm{~Hz}$), $7.62(\mathrm{~d}, 1 \mathrm{H}, J=8.0 \mathrm{~Hz}), 7.57(\mathrm{t}, 1 \mathrm{H}, J=7.6 \mathrm{~Hz}), 7.42(\mathrm{t}, 1 \mathrm{H}, J=7.6 \mathrm{~Hz}), 7.00(\mathrm{~s}, 1 \mathrm{H})$, $4.12(\mathrm{~s}, 3 \mathrm{H}), 2.78(\mathrm{t}, 2 \mathrm{H}, \mathrm{J}=7.5 \mathrm{~Hz}), 1.78$ (quint, $2 \mathrm{H}, \mathrm{J}=7.5 \mathrm{~Hz}$), 1.41 (sext, $2 \mathrm{H}, \mathrm{J}=$ $7.5 \mathrm{~Hz}), 0.97(\mathrm{t}, 3 \mathrm{H}, J=7.4 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=160.2,153.0,138.6$, 130.1, 125.6, 125.4, 124.0, 118.1, 111.7, 53.4, 37.6, 31.5, 22.4, 14.0; IR (film): $\tilde{v}=2954,2858,1629$, 1573, 1497, 1451, 1367, 1331, 1156, 1101, 986, 839, 750, 670, 556, $524 \mathrm{~cm}^{-1}$; MS (EI) m / z (\%): 216 (4), 215 (21), 200 (7), 186 (8), 174 (12), 173 (100), 172 (8), 158 (24), 131 (4), 115 (5), 103 (4); HRMS (ESI): m / z : calcd. for $\mathrm{C}_{14} \mathrm{H}_{18} \mathrm{NO}\left[M^{+}+H\right]$: 216.13829, found 216.13815.

Colorless oil ($34.5 \mathrm{mg}, 62 \%$). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=8.20(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=8.2 \mathrm{~Hz}$), $7.60-7.53(\mathrm{~m}, 2 \mathrm{H}), 7.42$ (ddd, $1 \mathrm{H}, \mathrm{J}=8.1,6.6,1.5 \mathrm{~Hz}$), 7.28-7.20 (m, 4H), 7.16 (t, 1H, $J=7.6 \mathrm{~Hz}), 6.94(\mathrm{~s}, 1 \mathrm{H}), 4.59(\mathrm{q}, 2 \mathrm{H}, J=7.1 \mathrm{~Hz}), 3.14-3.09(\mathrm{~m}, 2 \mathrm{H}), 3.08-3.03(\mathrm{~m}$,
$2 \mathrm{H}), 1.49(\mathrm{t}, 3 \mathrm{H}, \mathrm{J}=7.1 \mathrm{~Hz}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=160.0,151.7,142.2,138.5,130.1,128.5$, $128.2,125.7,125.6,125.5,124.1,118.3,111.8,61.7,39.6,35.5,14.6$ IR (film): $\tilde{v}=2978,1627,1572$, 1495, 1408, 1377, 1319, 1154, 1099, 1024, 840, 748, 697, $670 \mathrm{~cm}^{-1}$; MS (EI) m/z (\%): 278 (22), 277 (100), 276 (6), 263 (9), 262 (46), 250 (5), 249 (29), 248 (50), 233 (5), 232 (6), 231 (7), 230 (5), 206 (8), 200 (6), 186 (27), 172 (9), 171 (5), 159 (5), 158 (39), 145 (6), 142 (8), 140 (5), 131 (21), 130 (6), 115 (13), 103 (20), 91 (37), 89 (14), 77 (11), 65 (9), 63 (5), 29 (7); HRMS (ESI): m/z: calcd. for $\mathrm{C}_{19} \mathrm{H}_{20} \mathrm{NO}\left[M^{+}+H\right]: 278.15394$, found 278.15398 .

Colorless oil (198 mg, 81\%). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.64(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=7.1 \mathrm{~Hz}$), 7.48 (d, $1 \mathrm{H}, J=7.4 \mathrm{~Hz}), 7.39(\mathrm{td}, 1 \mathrm{H}, J=7.4,1.1 \mathrm{~Hz}), 7.33(\mathrm{td}, 1 \mathrm{H}, J=7.4,1.0 \mathrm{~Hz}), 6.24(\mathrm{~s}, 1 \mathrm{H})$, $4.59(\mathrm{q}, 2 \mathrm{H}, J=7.1 \mathrm{~Hz}), 1.48(\mathrm{t}, 3 \mathrm{H}, J=7.1 \mathrm{~Hz}), 0.30(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=$ 172.1, 158.7, 141.0, 131.5, 129.1, 127.9, 121.8, 120.3, 119.5, 64.7, 14.5, 0.2; IR (film): $\tilde{v}=$ 2954, 1725, 1537, 1406, 1377, 1342, 1322, 1243, 1088, 1011, 836, 759, $689 \mathrm{~cm}^{-1}$; MS (EI) $m / z(\%): 246(5), 245(22), 231$ (9), 230 (45), 218 (5), 217 (19), 216 (100), 202 (20), 201 (5), 186 (9), 115 (4), 103 (24), 100 (4), 77 (4), 76 (8), 75 (79), 73 (4), 59 (6), 45 (4); HRMS (ESI): m/z: calcd. for $\mathrm{C}_{14} \mathrm{H}_{20}$ NOSi $\left[M^{+}+H\right]$: 246.13087, found 246.13100.

Colorless oil ($37 \mathrm{mg}, 54 \%$). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=8.19$ ($\mathrm{d}, 1 \mathrm{H}, \mathrm{J}=8.2 \mathrm{~Hz}$), 7.61 (d, 1H, $J=7.9 \mathrm{~Hz}$), 7.56 (td, $1 \mathrm{H}, J=6.7,1.2 \mathrm{~Hz}$), 7.42 (ddd, $1 \mathrm{H}, \mathrm{J}=8.2,6.8,1.3$ $\mathrm{Hz}), 6.99(\mathrm{~s}, 1 \mathrm{H}), 4.55(\mathrm{q}, 2 \mathrm{H}, J=7.0 \mathrm{~Hz}), 4.33($ sext, $1 \mathrm{H}, J=6.6 \mathrm{~Hz}), 2.88(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}=$ $13.0,6.9 \mathrm{~Hz}), 2.77(\mathrm{dd}, 1 \mathrm{H}, J=13.0,5.8 \mathrm{~Hz}), 1.47(\mathrm{t}, 3 \mathrm{H}, J=7.1 \mathrm{~Hz}), 1.21(\mathrm{~d}, 3 \mathrm{H}, J=$ $6.1 \mathrm{~Hz}), 0.79(\mathrm{~s}, 9 \mathrm{H}),-0.06(\mathrm{~s}, 3 \mathrm{H}),-0.23(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{CNMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=159.9,149.9,138.5$, 130.1, 125.6, 125.5, 124.0, 118.2, 113.6, 68.7, 61.6, 48.5, 25.8, 23.9, 18.1, 14.7, -4.8, -5.1; IR (film): $\tilde{v}=$ 2954, 2926, 2856, 1629, 1573, 1498, 1409, 1376, 1321, 1253, 1097, 999, 834, 773, 750, $672 \mathrm{~cm}^{-1}$; MS (ESI) $m / z: 368,345$; HRMS (ESI): m / z : calcd. for $\mathrm{C}_{20} \mathrm{H}_{32} \mathrm{NO}_{2} \mathrm{Si}\left[M^{+}+H\right]$: 346.21968, found 346.21927.

Colorless oil ($35 \mathrm{mg}, 67 \%$). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=8.30(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=8.3 \mathrm{~Hz}), 7.75$ (d, 1H, J = 8.1 Hz), $7.65(\mathrm{td}, 1 \mathrm{H}, J=6.9,1.2 \mathrm{~Hz}), 7.56-7.51(\mathrm{~m}, 2 \mathrm{H}), 7.31-7.28(\mathrm{~m}, 4 \mathrm{H})$, $\left.4.62(\mathrm{q}, 2 \mathrm{H}, J=7.1 \mathrm{~Hz}), 2.50(\mathrm{~s}, 3 \mathrm{H}), 1.51(\mathrm{t}, 3 \mathrm{H}, J=7.1 \mathrm{~Hz}) ;{ }^{13} \mathrm{C} \mathrm{NMR} \mathrm{(100MHz,CDCl}_{3}\right): ~$ $\delta=159.6,150.9,140.6,138.4,136.4,130.8,130.3,129.9,127.8,126.3,126.2,125.8$, 124.2, 118.4, 114.1, 62.0, 20.9, 14.7; IR (film): $\tilde{v}=2977,1625,1569,1498,1406$, 1376, 1319, 1162, 1100, 1023, 931, 875, 847, 752, 725, 666, $534 \mathrm{~cm}^{-1}$; MS (EI) $\mathrm{m} / \mathrm{z}(\%): 264$ (8), 263 (30), 248 (8), 235 (20), 234 (100), 232 (7), 218 (5), 217 (6), 216 (16), 204 (6), 189 (5), 178 (4), 89 (5); HRMS (ESI): m / z : calcd. for $\mathrm{C}_{18} \mathrm{H}_{18} \mathrm{NO}\left[M^{+}+H\right]$: 264.13829, found 264.13806.

Colorless oil ($40 \mathrm{mg}, 81 \%$). ${ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=8.19$ (dd, $1 \mathrm{H}, \mathrm{J}=9.0,5.8$ $\mathrm{Hz}), 7.20(\mathrm{dd}, 1 \mathrm{H}, J=9.7,2.5 \mathrm{~Hz}), 7.13(\mathrm{td}, 1 \mathrm{H}, J=8.8,2.5 \mathrm{~Hz}), 6.91(\mathrm{~s}, 1 \mathrm{H}), 4.55$ $(q, 2 H, J=7.1 \mathrm{~Hz}), 2.73(\mathrm{t}, 2 \mathrm{H}, J=7.6 \mathrm{~Hz}), 1.75$ (quint, $2 \mathrm{H}, J=7.4 \mathrm{~Hz}$), $1.47(\mathrm{t}, 3 \mathrm{H}, J$ $=7.1 \mathrm{~Hz}), 1.39($ sext, $2 \mathrm{H}, J=7.6 \mathrm{~Hz}), 0.95(\mathrm{t}, 3 \mathrm{H}, J=7.3 \mathrm{~Hz}) ;{ }^{13} \mathrm{C} \mathrm{NMR}(100 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right): \delta=163.6\left(\mathrm{~d}, J_{C-F}=248.3 \mathrm{~Hz}\right), 159.8,154.6,140.3\left(\mathrm{~d}, J_{C-F}=10.2 \mathrm{~Hz}\right), 127.1\left(\mathrm{~d}, J_{C-F}=9.7 \mathrm{~Hz}\right), 115.1$, $115.0\left(\mathrm{~d}, J_{C-F}=24.7 \mathrm{~Hz}\right), 111.2\left(\mathrm{~d}, J_{C-F}=4.1 \mathrm{~Hz}\right), 109.1\left(\mathrm{~d}, J_{C-F}=21.0 \mathrm{~Hz}\right), 61.8,37.6,31.4,22.4,14.6,14.0$; ${ }^{19}$ F NMR ($282 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=-109.4$; IR (film): $\tilde{v}=2956,2930,2872,1633,1574,1501,1407,1376$, 1322, 1226, 1133, 1105, 1025, 964, 869, 824, 771, $665 \mathrm{~cm}^{-1}$; MS (EI) m/z (\%): 248 (8), 247 (21), 232 (21), 219 (5), 218 (9), 206 (13), 205 (100), 204 (8), 190 (8), 177 (55), 176 (15), 159 (5), 149 (10), 134 (5), 133 (7), 121 (5), 107 (8); HRMS (ESI): m / z : calcd. for $\mathrm{C}_{15} \mathrm{H}_{19} \mathrm{NOF}\left[M^{+}+H\right]: 248.14452$, found 248.14467.

White solid ($42 \mathrm{mg}, 80 \%$). $\mathrm{Mp}=25-26{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=8.10(\mathrm{~d}$,
 $1 \mathrm{H}, J=8.8 \mathrm{~Hz}), 7.57(\mathrm{~d}, 1 \mathrm{H}, J=2.0 \mathrm{~Hz}), 7.33(\mathrm{dd}, 1 \mathrm{H}, J=8.8,2.0 \mathrm{~Hz}), 6.87(\mathrm{~s}, 1 \mathrm{H})$, $4.54(q, 2 H, J=7.1 \mathrm{~Hz}), 2.73(\mathrm{t}, 2 \mathrm{H}, J=7.5 \mathrm{~Hz}), 1.74$ (quint, $2 \mathrm{H}, J=7.4 \mathrm{~Hz}$), $1.47(\mathrm{t}$, $3 \mathrm{H}, J=7.1 \mathrm{~Hz}$), 1.38 (sext, $2 \mathrm{H}, J=7.6 \mathrm{~Hz}), 0.95(\mathrm{t}, 3 \mathrm{H}, J=7.3 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR (100 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=159.9,154.7,139.5,136.2,126.1,125.9,124.5,116.3,110.6,61.8,37.6,31.4,22.4$, 14.6, 14.0; IR (film): $\tilde{v}=2978,2954,2925,2870,1625,1567,1474,1409,1374,1315,1194,1015,872$, 829, 772, 664, $594 \mathrm{~cm}^{-1}$; MS (EI) m/z (\%): 263 (13), 250 (7), 248 (23), 234 (13), 223 (31), 222 (16), 221 (100), 220 (12), 206 (12), 195 (28), 194 (16), 193 (84), 192 (22), 190 (5), 177 (7), 175 (5), 167 (6), 166 (5), 165 (14), 164 (6), 158 (5), 152 (8), 150 (5), 141 (7), 140 (13), 137 (7), 128 (6), 127 (5), 123 (14), 115 (9), 114 (10), 102 (10), 101 (8), 89 (6), 27 (6); HRMS (ESI): m/z: calcd. for $\mathrm{C}_{15} \mathrm{H}_{19} \mathrm{NOCl}\left[M^{+}+\mathrm{H}\right]:$ 264.11497, found 264.11507 .

White solid ($45 \mathrm{mg}, 81 \%$). $\mathrm{Mp}=51-52{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=8.60-8.56$ $(\mathrm{m}, 1 \mathrm{H}), 8.12(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=9.0 \mathrm{~Hz}), 7.91-7.86(\mathrm{~m}, 1 \mathrm{H}), 7.78(\mathrm{~s}, 1 \mathrm{H}), 7.70(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=9.0$ $\mathrm{Hz}), 7.65-7.60(\mathrm{~m}, 2 \mathrm{H}), 4.59(\mathrm{q}, 2 \mathrm{H}, J=7.0 \mathrm{~Hz}), 2.87(\mathrm{t}, 2 \mathrm{H}, J=7.6 \mathrm{~Hz}), 1.82$ (quint, $2 \mathrm{H}, J=7.5 \mathrm{~Hz}$), $1.50(\mathrm{t}, 3 \mathrm{H}, J=7.1 \mathrm{~Hz}), 1.42(\mathrm{sext}, 2 \mathrm{H}, J=7.6 \mathrm{~Hz}), 0.96(\mathrm{t}, 3 \mathrm{H}, J=$ $7.4 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=160.3,155.1,137.2,133.7,128.5,128.4$, $127.8,126.3,125.8,123.5,121.2,114.8,107.4,61.8,38.1,31.8,22.5,14.7,14.0$; IR (film): $\tilde{v}=2959$, 2926, 1621, 1577, 1515, 1428, 1373, 1327, 1084, 1045, 1027, 825, 756, 740, $556 \mathrm{~cm}^{-1}$; MS (EI) m/z (\%): 280 (9), 279 (40), 265 (5), 264 (26), 251 (7), 250 (9), 238 (18), 237 (100), 236 (8), 222 (8), 209 (42), 208 (41), 190 (9), 181 (5), 180 (8), 178 (5), 166 (5), 165 (14), 153 (11), 152 (10), 151 (5), 139 (11), 29 (10); HRMS (ESI): m / z : calcd. for $\mathrm{C}_{19} \mathrm{H}_{22} \mathrm{NO}\left[M^{+}+H\right]:$ 280.16959, found 280.16980 .

White solid ($50 \mathrm{mg}, 86 \%$). $\mathrm{Mp}=58-59{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.44$ (s,
 $1 \mathrm{H}), 6.90(\mathrm{~s}, 1 \mathrm{H}), 6.86(\mathrm{~s}, 1 \mathrm{H}), 4.54(\mathrm{q}, 2 \mathrm{H}, \mathrm{J}=7.1 \mathrm{~Hz}), 3.98(\mathrm{~s}, 3 \mathrm{H}), 3.95(\mathrm{~s}, 3 \mathrm{H})$, $2.70(\mathrm{t}, 2 \mathrm{H}, J=7.5 \mathrm{~Hz}), 1.73$ (quint, $2 \mathrm{H}, J=7.4 \mathrm{~Hz}$), $1.46(\mathrm{t}, 3 \mathrm{H}, J=7.0 \mathrm{~Hz}), 1.37$ (sext, $2 \mathrm{H}, J=7.6 \mathrm{~Hz}$), $0.93(\mathrm{t}, 3 \mathrm{H}, J=7.4 \mathrm{~Hz}) ;{ }^{13} \mathrm{C} \mathrm{NMR} \mathrm{(100} \mathrm{MHz}$,CDCl 3): $\delta=158.8$, 152.5, 151.7, 148.6, 134.9, 112.5, 110.7, 104.5, 102.8, 61.4, 55.9, 55.8, 37.4, 31.5, 22.3, 14.7, 14.0; IR (film): $\tilde{v}=2954,2923,1625,1578,1508,1423,1316,1256,1215,1164,1091,1026$, 860, 774, $642 \mathrm{~cm}^{-1}$; MS (EI) m/z (\%): 290 (9), 289 (44), 275 (5), 274 (30), 261 (8), 260 (11), 248 (15), 247 (100), 246 (10), 232 (7), 219 (24), 218 (72), 204 (6), 174 (6), 29 (7); HRMS (ESI): m/z: calcd. for $\mathrm{C}_{17} \mathrm{H}_{23} \mathrm{NO}_{3} \mathrm{Na}\left[M^{+}+\mathrm{Na}\right]: 312.15701$, found 312.15711.

This compound is air-sensitive and must be handled with care. No chromatography was made for its isolation; rather, the crude material was dissolved in hexane/tertbutyl methyl ether (95/5) and the solution quickly filtered through a short plug of silica. Evaporation of the filtrate gave compound of sufficient purity. The low integrals for the two protons of the thiophene core are ascribed to issues with their relaxation time. Yellow oil ($45 \mathrm{mg}, 96 \%$). ${ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.98$ (dd, $0.6 \mathrm{H}, \mathrm{J}=3.2,1.0 \mathrm{~Hz}$), $7.33(\mathrm{~d}, 0.8 \mathrm{H}, \mathrm{J}=$ 3.2 Hz), $6.75(\mathrm{~s}, 1 \mathrm{H}), 4.53(\mathrm{q}, 2 \mathrm{H}, J=7.1 \mathrm{~Hz}), 2.62(\mathrm{t}, 2 \mathrm{H}, J=7.6 \mathrm{~Hz}), 1.70$ (quint, $2 \mathrm{H}, J=7.4 \mathrm{~Hz}$), $1.45(\mathrm{t}$, $3 \mathrm{H}, \mathrm{J}=7.1 \mathrm{~Hz}$), 1.38 (sext, $2 \mathrm{H}, J=7.4 \mathrm{~Hz}$), $0.94(\mathrm{t}, 3 \mathrm{H}, J=7.4 \mathrm{~Hz}) ;{ }^{13} \mathrm{C} N \mathrm{NR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=156.9$, 150.2, 141.5, 126.0, 120.6, 114.0, 105.6, 61.4, 37.3, 31.2, 22.4, 14.6, 14.1; IR (film): $\tilde{v}=2956,2930$, 2859, 1697, 1614, 1525, 1498, 1367, 1311, 1104, 1074, 1019, 861, 831, 804, 751, $732 \mathrm{~cm}^{-1} ; \mathrm{MS}$ (EI) m/z (\%): 236 (5), 235 (35), 220 (18), 207 (7), 206 (25), 195 (5), 194 (12), 193 (100), 192 (14), 190 (6), 178 (17),

177 (6), 166 (10), 165 (89), 164 (47), 149 (6), 148 (6), 137 (25), 136 (5), 124 (5), 122 (13), 121 (7), 109 (8), 45 (9), 27 (6); HRMS (EI): m/z: calcd. for $\mathrm{C}_{13} \mathrm{H}_{17}$ NOS [M^{+}]: 235.10308, found 235.10333.

Colorless oil ($55 \mathrm{mg}, 57 \%$). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=6.50(\mathrm{~s}, 1 \mathrm{H}), 6.30(\mathrm{~s}, 1 \mathrm{H})$, $4.28(\mathrm{q}, 2 \mathrm{H}, J=7.1 \mathrm{~Hz}), 2.60(\mathrm{t}, 2 \mathrm{H}, J=7.6 \mathrm{~Hz}), 2.22(\mathrm{~s}, 3 \mathrm{H}), 1.65$ (quint, $2 \mathrm{H}, \mathrm{J}=5.8 \mathrm{~Hz}$), $1.38-1.29(\mathrm{~m}, 2 \mathrm{H}), 1.35(\mathrm{t}, 3 \mathrm{H}, \mathrm{J}=7.0 \mathrm{~Hz}), 0.91(\mathrm{t}, 3 \mathrm{H}, \mathrm{J}=7.4 \mathrm{~Hz}) ;{ }^{13} \mathrm{C} \mathrm{NMR} \mathrm{(100MHz}$, $\left.\mathrm{CDCl}_{3}\right): \delta=163.7,160.0,149.8,116.5,107.2,61.4,37.5,31.6,22.4,20.9,14.7,14.0 ; \mathrm{IR}$ (film): $\tilde{v}=2956,2930,2860,1612,1568,1429,1337,1214,1149,1096,1058,835 \mathrm{~cm}^{-1} ;$ MS (EI) m / z (\%): 193 (3), 178 (34), 164 (14), 151 (100), 150 (10), 136 (12), 123 (70), 77 (7), 67 (4), 53 (10), 41 (6), 27 (6); HRMS (ESI): m / z : calcd. for $\mathrm{C}_{12} \mathrm{H}_{20} \mathrm{NO}\left[M^{+}+\mathrm{H}\right]$: 194.15393, found 194.15394.

Colorless oil ($101 \mathrm{mg}, 79 \%$). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.63$ (dd, $2 \mathrm{H}, \mathrm{J}=6.7,1.5$ 151.3, 138.9, 128.8, 128.6, 126.9, 113.6, 105.0, 61.5, 37.8, 31.6, 22.4, 14.7, 14.0; IR (film): $\tilde{v}=2955$, 2929, 2860, 1610, 1553, 1411, 1374, 1339, 1204, 1047, 856, 761, 694, $538 \mathrm{~cm}^{-1}$; MS (EI) $\mathrm{m} / \mathrm{z}(\%): 256$ (5), 255 (7), 240 (21), 226 (10), 214 (15), 213 (100), 198 (6), 185 (34), 167 (5), 156 (6), 115 (8); HRMS (ESI): m / z : calcd. for $\mathrm{C}_{17} \mathrm{H}_{22} \mathrm{NO}\left[\mathrm{M}^{+}+\mathrm{H}\right]$: 256.16958 , found 256.16968 .

Colorless oil ($66 \mathrm{mg}, 62 \%$). ${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=8.04(\mathrm{~d}, 2 \mathrm{H}, \mathrm{J}=7.1 \mathrm{~Hz}), 7.44(\mathrm{t}$,
 $2 \mathrm{H}, \mathrm{J}=7.6 \mathrm{~Hz}), 7.38(\mathrm{t}, 1 \mathrm{H}, \mathrm{J}=7.2 \mathrm{~Hz}), 7.16(\mathrm{~s}, 1 \mathrm{H}), 6.50(\mathrm{~s}, 1 \mathrm{H}), 4.49(\mathrm{q}, 2 \mathrm{H}, \mathrm{J}=7.1 \mathrm{~Hz})$, $2.34(\mathrm{~s}, 3 \mathrm{H}), 1.44(\mathrm{t}, 3 \mathrm{H}, \mathrm{J}=7.0 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=163.8,154.3,150.1$, 139.2, 128.5, 128.4, 126.6, 114.2, 109.4, 61.3, 21.0, 14.7; IR (film): $\tilde{v}=2978,1610,1563$, 1430, 1411, 1380, 1336, 1227, 1155, 1052, 836, 771, 691, $561 \mathrm{~cm}^{-1}$; MS (EI) m/z (\%): 214 (11), 213 (40), 212 (6), 199 (14), 198 (100), 186 (4), 185 (32), 184 (7), 170 (5), 169 (21), 168 (21), 167 (4), 157 (17), 156 (23), 154 (10), 141 (4), 129 (5), 128 (8), 127 (4), 115 (6), 84 (6), 77 (5), 53 (6), 51 (6), 49 (7), 29 (5), 27 (5); HRMS (EI): m / z : calcd. for $\mathrm{C}_{14} \mathrm{H}_{15} \mathrm{NO}\left[M^{+}\right]: 213.11536$, found 213.11510.

Colorless oil ($55 \mathrm{mg}, 56 \%$). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.72(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}=8.1,7.4 \mathrm{~Hz}$), $6.65(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=7.2 \mathrm{~Hz}), 6.48(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=8.2 \mathrm{~Hz}), 4.31(\mathrm{q}, 2 \mathrm{H}, \mathrm{J}=7.1 \mathrm{~Hz}), 2.65(\mathrm{t}, 2 \mathrm{H}, J=7.6$ Hz), 2.65 (quint, $2 \mathrm{H}, \mathrm{J}=7.4 \mathrm{~Hz}$), 1.40-1.30 (m, 2H), $1.37(\mathrm{t}, 3 \mathrm{H}, \mathrm{J}=7.0 \mathrm{~Hz}), 0.91(\mathrm{t}, 3 \mathrm{H}, \mathrm{J}=$ $7.4 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=163.4,160.4,138.6,114.9,107.1,61.4,37.6$, $31.6,22.4,14.7,14.0$; IR (film): $\tilde{v}=2956,2930,2860,1595,1578,1446,1282,1258,1042,988,789 \mathrm{~cm}^{-1}$; MS (EI) m/z (\%): 179 (4), 165 (4), 164 (28), 151 (4), 150 (13), 137 (100), 136 (11), 135 (6), 134 (4), 123 (4), 122 (16), 109 (85), 106 (8), 104 (8), 93 (7), 92 (6), 91 (17), 81 (8), 80 (12), 79 (5), 77 (7), 66 (7), 65 (8), 53 (8), 41 (5), 39 (12), 29 (5), 27 (6); HRMS (EI): m / z : calcd. for $\mathrm{C}_{11} \mathrm{H}_{17} \mathrm{NO}\left[M^{+}\right]$: 179.13101, found 179.13107.

Representative Procedure for the Deprotection. ${ }^{16}$ Preparation of 3-Butylisoquinolin-1(2H)-one. An
 aliquot of a stock solution of TMSCI ($3.4 \mathrm{~mL}, 0.26 \mathrm{mmol}$) [$50 \mu \mathrm{~L}$ of TMSCl in 5 mL of MeCN] was added to a solution of 3-butyl-1-ethoxyisoquinoline ($46 \mathrm{mg}, 0.2 \mathrm{mmol}$) and $\mathrm{NaI}(30 \mathrm{mg}, 0.2 \mathrm{mmol})$ in $\mathrm{MeCN}(13 \mathrm{~mL})$. The resulting mixture is stirred for 2 h at reflux temperature. Additional $\mathrm{NaI}(15 \mathrm{mg}, 0.1 \mathrm{mmol})$ and $\mathrm{TMSCl}(16 \mu \mathrm{~L}, 0.13 \mathrm{mmol})$ were added and heating continued for additional 30 min . After reaching ambient temperature, the reaction was quenched with water and the aqueous layer repeatedly extracted with EtOAc. The combined extracts

[^11]were washed with water, aq. $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}(10 \mathrm{~mol} \%)$ and brine before they were dried over MgSO_{4} and evaporated to give the title compound (41 mg , quant.). The spectroscopic data were in good agreement with those reported in the literature. ${ }^{17}$

Double Cyclization

Methyl deca-2,9-diynoate. A solution of MeMgCl in THF ($2.76 \mathrm{M}, 5.8 \mathrm{~mL}, 16 \mathrm{mmol}$) was added dropwise to a solution of 1,8 -nonadiyne ($2.40 \mathrm{~mL}, 16.0 \mathrm{mmol}$) in THF $(80 \mathrm{~mL})$ at $-20^{\circ} \mathrm{C}$. The cold bath was removed and the mixture stirred for 5 h at room temperature before it was cooled again to $-20^{\circ} \mathrm{C}$. Methyl chloroformate (80 $\mathrm{mmol}, 6.2 \mathrm{~mL}$) was added and stirring continued for 1 h at ambient temperature. The reaction was quenched with aq. sat. $\mathrm{NH}_{4} \mathrm{Cl}$, the aqueous layer was extracted with tert-butyl methyl ether and the combined extracts were washed with water and brine before they were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated. Purification of the residue by flash chromatography (hexanes/tert-butyl methyl ether, $85: 15)$ gave the title compound as a colorless oil ($1.48 \mathrm{~g}, 52 \%$). ${ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=3.69$ (s, $3 \mathrm{H}), 2.29(\mathrm{t}, 2 \mathrm{H}, J=6.8 \mathrm{~Hz}), 2.16-2.12(\mathrm{~m}, 2 \mathrm{H}), 1.89(\mathrm{t}, 1 \mathrm{H}, J=2.6 \mathrm{~Hz}), 1.58-1.44(\mathrm{~m}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 $\mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=154.1,89.3,84.0,72.9,68.4,52.4,27.8,27.7,26.9,18.4,18.1$; IR (film): $\tilde{v}=3294,2942$, 2864, 2236, 1710, 1434, 1249, 1076, 752, $634 \mathrm{~cm}^{-1}$; MS (EI) m / z (\%): 149 (5), 147 (5), 135 (9), 119 (20), 118 (9), 117 (43), 115 (7), 111 (6), 107 (10), 105 (20), 103 (8), 93 (7), 92 (11), 91 (100), 81 (25), 79 (67), 77 (37), 69 (5), 68 (6), 67 (14), 66 (26), 65 (13), 59 (21), 55 (16), 53 (39), 51 (18), 41 (51), 39 (47), 38 (6), 29 (8), 27 (14); HRMS (ESI): m / z : calcd. for $\mathrm{C}_{11} \mathrm{H}_{14} \mathrm{O}_{2} \mathrm{Na}\left[M^{+}+N a\right]$: 201.08860, found 201.08870.

Compound 63. A solution of 2-iodobenzamide ($1.065 \mathrm{~g}, 4.3 \mathrm{mmol}$), triethylamine ($2.40 \mathrm{~mL}, 17.2 \mathrm{mmol}$),
 $\mathrm{PdCl}_{2}\left(\mathrm{PPh}_{3}\right)_{2}(106 \mathrm{mg}, 0.15 \mathrm{mmol}, 3.5 \mathrm{~mol} \%)$ and copper iodide (66 mg , $0.08 \mathrm{mmol}, 8 \mathrm{~mol} \%$) in DMF (16 mL) was stirred for 1 h before a solution of methyl deca-2,9-diynoate ($922 \mathrm{mg}, 5.17 \mathrm{mmol}$) in DMF (4.0 $\mathrm{mL}+1.5 \mathrm{~mL}$ for rinsing) was added. The resulting mixture was stirred for 4 d . For work up, the mixture was poured into water, the aqueous phase was repeatedly extracted with EtOAc, and the combined extracts were washed with water and brine before they were dried ($\mathrm{Na}_{2} \mathrm{SO}_{4}$) and concentrated. Purification of the residue by flash chromatography (tert-butyl methyl ether/hexanes, 95:5) furnished the title compound as a yellow solid ($932 \mathrm{mg}, 73 \%$). $\mathrm{Mp}=63-64^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.47-7.43(\mathrm{dd}, 1 \mathrm{H}, J=6.8,2.5 \mathrm{~Hz}$), $7.53(\mathrm{br} . \mathrm{s}, 1 \mathrm{H}), 7.49-7.45(\mathrm{dd}, 1 \mathrm{H}, J=6.6$, 2.4 Hz), $7.41-7.34(\mathrm{~m}, 2 \mathrm{H}), 6.01(\mathrm{br} . \mathrm{s}, 1 \mathrm{H}), 3.72(\mathrm{~s}, 3 \mathrm{H}), 2.49(\mathrm{t}, 2 \mathrm{H}, J=6.6 \mathrm{~Hz}), 2.36(\mathrm{t}, 2 \mathrm{H}, \mathrm{J}=6.4 \mathrm{~Hz})$, 1.66-1.55 (m, 6H); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=168.2,154.1,134.2,133.8,130.9,130.1,128.1,120.8$, $97.0,89.3,79.9,73.1,52.6,28.0,27.8,26.9,19.5,18.5$; IR (film): $\tilde{v}=3361,3171,2943,2233,1707,1637$, 1594, 1450, 1398, 1252, 1076, 815, 779, 749, $631 \mathrm{~cm}^{-1}$; MS (EI) m / z (\%): 239 (7), 238 (25), 237 (5), 236 (7), 224 (13), 223 (11), 222 (13), 221 (22), 220 (11), 219 (8), 210 (7), 209 (10), 208 (11), 207 (8), 205 (6), 203 (8), 200 (18), 196 (12), 195 (14), 194 (15), 193 (13), 192 (6), 191 (8), 183 (8), 182 (10), 181 (14), 180 (12), 179 (8), 178 (13), 173 (5), 172 (26), 168 (5), 167 (8), 166 (8), 165 (24), 160 (9), 159 (100), 158 (26), 155 (11), 154 (7), 153 (9), 152 (8), 146 (8), 144 (5), 143 (6), 141 (9), 140 (12), 133 (7), 132 (6), 131 (7), 130 (42), 129 (8), 128 (16), 127 (17), 126 (5), 117 (5), 116 (7), 115 (29), 114 (13), 113 (6), 105 (9), 104 (12), 103 (19), 102 (9), 101 (7), 91 (9), 89 (7), 88 (6), 79 (11), 77 (29), 75 (5), 66 (8), 65 (6), 63 (8), 55 (7), 53 (8), 52 (6), 51 (9), 44 (8), 43 (7), 41 (6), 39 (10), 29 (8); HRMS (ESI): m/z: calcd. for $\mathrm{C}_{18} \mathrm{H}_{19} \mathrm{NO}_{3} \mathrm{Na}$ $\left[M^{+}+N a\right]: 320.12571$, found 320.12572.

[^12]Compound 65. tert-Butyl acetate ($176 \mu \mathrm{~L}, 1.3 \mathrm{mmol}$) was added to a freshly prepared solution of LDA
 (1.0 M in THF, $1.2 \mathrm{~mL}, 1.2 \mathrm{mmol}$) at $-78^{\circ} \mathrm{C}$. The mixture was stirred for 30 min at this temperature before a solution of compound $63(149 \mathrm{mg}$, 0.5 mmol) in THF (1.2 mL) was added dropwise. Stirring was continued for 4 h at $-78^{\circ} \mathrm{C}$. The reaction was quenched with aq. sat. $\mathrm{NH}_{4} \mathrm{Cl}$ and the aqueous phase extracted with tert-butyl methyl ether. The combined extracts were washed with water and brine before they were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and gently concentrated. The resulting product is instable; attempted chromatography (silica) results in extensive degradation. The product should be carefully handled and directly used in the next step.

Triethyloxonium tetrafluoroborate ($95 \mathrm{mg}, 0.5 \mathrm{mmol}$) was added to a solution of the crude material in dichloromethane (2.5 mL). The mixture was stirred for 2 h before triethylamine ($70 \mu \mathrm{~L}, 0.5 \mathrm{mmol}$) and ether (1.0 mL) were added. After 5 min , the mixture was filtered through a plug of silica, which was carefully rinsed with tert-butyl methyl ether. The combined filtrates were concentrated and the residue dissolved in chloroform (1.0 mL).

This solution of the crude imidate was added at $0^{\circ} \mathrm{C}$ to a solution of AgOTs ($14 \mathrm{mg}, 0.05 \mathrm{mmol}, 10 \mathrm{~mol} \%$) and DMEDA ($5.4 \mu \mathrm{~L}, 0.05 \mathrm{mmol}, 10 \mathrm{~mol} \%$) in chloroform ($1.0 \mathrm{~mL}+0.5$ for rising). The ice bath was removed and the mixture stirred overnight before it was filtered through a plug of silica that was carefully rinsed with tert-butyl methyl ether. The combined filtrates were concentrated and the residue purified by flash chromatography (tert-butyl methyl ether $/ \mathrm{CH}_{2} \mathrm{Cl}_{2}, 4: 1$) to give the title compound as a pale yellow oil ($137 \mathrm{mg}, 67 \%$). At this stage, trace amounts of an inseparable impurity were present which could be removed in the next step. ${ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=8.18(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=8.2 \mathrm{~Hz})$, $7.62-$ $7.53(\mathrm{~m}, 2 \mathrm{H}), 7.41(\mathrm{ddd}, 1 \mathrm{H}, J=8.2,6.5,1.6 \mathrm{~Hz}), 6.95(\mathrm{~s}, 1 \mathrm{H}), 5.98(\mathrm{~d}, 1 \mathrm{H}, J=1.9 \mathrm{~Hz}), 5.55(\mathrm{~d}, 1 \mathrm{H}, J=2.0$ $\mathrm{Hz}), 4.54(\mathrm{q}, 2 \mathrm{H}, J=7.1 \mathrm{~Hz}), 2.73(\mathrm{t}, 2 \mathrm{H}, J=7.4 \mathrm{~Hz}), 2.46(\mathrm{t}, 2 \mathrm{H}, J=7.5 \mathrm{~Hz}), 1.80$ (quint, $2 \mathrm{H}, J=7.6 \mathrm{~Hz}$), 1.73-1.63 (m, 2H), 1.49-1.40 (m, 14H); ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=182.4,165.7,165.5,160.0,152.3$, $138.5,130.1,125.5,125.4,124.0,118.2,112.4,111.6,98.2,85.3,61.6,37.5,33.1,28.8,28.6,28.4,26.6$, 14.6; IR (film): $\tilde{v}=2979,2932,2859,1657,1626,1572,1372,1320,1247,1137,1101,1023,930,840$, $753,671 \mathrm{~cm}^{-1}$; MS (EI) m / z (\%): 411 (5), 410 (29), 409 (97), 294 (6), 353 (8), 352 (9), 338 (8), 335 (9), 324 (19), 310 (6), 289 (5), 238 (7), 228 (14), 215 (12), 214 (9), 212 (5), 201 (18), 200 (92), 198 (13), 188 (13), 187 (100), 186 (26), 185 (6), 184 (14), 173 (8), 172 (32), 171 (10), 167 (8), 160 (5), 159 (42), 158 (31), 154 (10), 143 (6), 142 (5), 141 (5), 131 (11), 130 (5), 116 (5), 115 (7), 103 (7), 69 (9), 57 (51), 41 (9), 29 (12); HRMS (ESI): m / z : calcd. for $\mathrm{C}_{25} \mathrm{H}_{31} \mathrm{NO}_{4} \mathrm{Na}\left[M^{+}+\mathrm{Na}\right]: 432.21453$, found 432.21482.

Compound 67. An aliquot of a stock solution of TMSCI ($5.3 \mathrm{~mL}, 0.84 \mathrm{mmol}, 2.6 \mathrm{eq}$) [200 $\mu \mathrm{L}$ of TMSCl in 10 mL of MeCN] was added to a solution of compound 63 ($132 \mathrm{mg}, 0.32 \mathrm{mmol}$) and $\mathrm{NaI}(96 \mathrm{mg}, 0.64$ mmol) in MeCN (21 mL). The mixture was then stirred for 3 h at reflux temperature. After reaching ambient temperature, the reaction was quenched with water and the aqueous layer was repeatedly extracted with EtOAc. The combined extracts were successively washed with water, aq. $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}(10$ mol\%) and water.

The insoluble material was filtered off, and the organic phase was concentrated. The residue was dried in high vacuum for 1 h before it was suspended in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (28 mL). Triethylamine ($1.82 \mathrm{~mL}, 13.0 \mathrm{mmol}$) was added at $0^{\circ} \mathrm{C}$, followed by propionic anhydride ($1.26 \mathrm{~mL}, 9.8 \mathrm{mmol}$). The mixture was stirred for 3 h at this temperature before water was
introduced. The aqueous layer was repeatedly extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, the combined organic phases were washed with water and brine, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated. The crude material still contained anhydride which was pumped off in high vacuum before the residue was purified by flash chromatography (EtOAc/tert-butyl methyl ether, 4:1) to give the title compound as a yellow solid (95 $\mathrm{mg}, 77 \%), \mathrm{Mp}=130-131^{\circ} \mathrm{C} .{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=11.44$ (br. s, 1 H$), 8.32(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=8.0 \mathrm{~Hz}), 7.59$ $(\mathrm{t}, 1 \mathrm{H}, J=7.2 \mathrm{~Hz}), 7.46(\mathrm{~d}, 1 \mathrm{H}, J=7.6 \mathrm{~Hz}), 7.40(\mathrm{t}, 1 \mathrm{H}, J=7.9 \mathrm{~Hz}), 6.29(\mathrm{~s}, 1 \mathrm{H}), 6.01(\mathrm{~d}, 1 \mathrm{H}, J=2.0 \mathrm{~Hz}), 5.89$ (d, 1H, J = 2.0 Hz), $2.63(\mathrm{t}, 2 \mathrm{H}, J=7.5 \mathrm{~Hz}$), 2.54-2.46 (m, 4H), 1.78 (quint, $2 \mathrm{H}, J=7.6 \mathrm{~Hz}$), 1.71 (quint, $2 \mathrm{H}, \mathrm{J}$ $=7.6 \mathrm{~Hz}$), 1.45 (quint, $2 \mathrm{H}, \mathrm{J}=7.1 \mathrm{~Hz}$), $1.19\left(\mathrm{t}, 3 \mathrm{H}, \mathrm{J}=7.5 \mathrm{~Hz}\right.$); ${ }^{13} \mathrm{C} \mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=170.5,166.6$, 163.8, 163.1, 141.6, 138.7, 132.6, 127.1, 125.8, 125.7, 104.0, 101.0, 100.7, 33.6, 33.1, 28.2, 27.9, 27.8, 26.3, 8.6; IR (film): $\tilde{v}=2920,1781,1712,1638,1567,1462,1345,1164,1100,1068,855,800,762,688$, $580,469 \mathrm{~cm}^{-1}$; MS (EI) m/z (\%): 382 (18), 381 (38), 326 (10), 325 (33), 200 (13), 198 (5), 187 (17), 186 (8), 184 (5), 173 (22), 172 (100), 171 (8), 160 (11), 159 (96), 158 (17), 131 (10), 103 (6), 89 (5), 69 (6), 57 (27), 29 (20), 27 (5); HRMS (ESI): m/z: calcd. for $\mathrm{C}_{22} \mathrm{H}_{23} \mathrm{NO}_{5} \mathrm{Na}\left[\mathrm{M}+\mathrm{Na}{ }^{+}\right]$: 404.14684, found 404.14688.

Compound 66. A solution of boron tribromide ($1.0 \mathrm{M}, 0.62 \mathrm{mmol}, 624 \mu \mathrm{~L}$) was added to a solution of
 compound $65(64 \mathrm{mg}, 0.16 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(4.7 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$. The ice bath was removed and the mixture stirred for 1 d at ambient temperature. The reaction was quenched at $0^{\circ} \mathrm{C}$ with water and the aqueous layer was repeatedly extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined extracts were washed with water and brine, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated. The residue was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(11 \mathrm{~mL})$. Triethylamine ($344 \mu \mathrm{~L}, 2.5 \mathrm{mmol}$) was added at $0^{\circ} \mathrm{C}$ followed by propionic anhydride ($172 \mu \mathrm{~L}, 1.3 \mathrm{mmol}$). The mixture was stirred overnight while reaching ambient temperature. The reaction was carefully quenched with aq. sat. NaHCO_{3} and the aqueous layer extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined organic phases were washed with water and brine, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated. Excess anhydride was pumped off in vacuum before the residue was purified by flash chromatography (tert-butyl methyl ether/hexane, $3: 2$) to give the title compound as a yellow solid ($24 \mathrm{mg}, 38 \%$), $\mathrm{Mp}=$ $68-70^{\circ} \mathrm{C} .{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=8.17(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=8.2 \mathrm{~Hz}), 7.61(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=8.0 \mathrm{~Hz}), 7.46$ (ddd, $1 \mathrm{H}, \mathrm{J}=$ $8.0,6.7,1.2 \mathrm{~Hz}), 7.41(\mathrm{ddd}, 1 \mathrm{H}, \mathrm{J}=8.2,6.8,1.4 \mathrm{~Hz}), 6.95(\mathrm{~s}, 1 \mathrm{H}), 6.01(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=2.0 \mathrm{~Hz}), 5.89(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=$ $2.0 \mathrm{~Hz}), 4.54(\mathrm{q}, 2 \mathrm{H}, J=7.1 \mathrm{~Hz}), 2.73(\mathrm{t}, 2 \mathrm{H}, J=7.4 \mathrm{~Hz}), 2.53(\mathrm{q}, 2 \mathrm{H}, J=7.5 \mathrm{~Hz}), 2.47(\mathrm{t}, 2 \mathrm{H}, J=7.7 \mathrm{~Hz})$, 1.79 (quint, $2 \mathrm{H}, \mathrm{J}=7.6 \mathrm{~Hz}$), 1.70 (quint, $2 \mathrm{H}, \mathrm{J}=7.7 \mathrm{~Hz}$), 1.48-1.39 (m, 2H), $1.47(\mathrm{t}, 3 \mathrm{H}, \mathrm{J}=7.0 \mathrm{~Hz}), 1.21(\mathrm{t}$, $3 \mathrm{H}, \mathrm{J}=7.6 \mathrm{~Hz}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=170.5,167.0,163.8,163.1,159.9,152.4,138.5,130.1$, 125.6, 125.4, 124.0, 118.2, 111.6, 100.9, 100.5, 61.6, 37.4, 33.8, 28.7, 28.5, 27.8, 26.5, 14.6, 8.6; IR (film): $\tilde{v}=2937,2862,2360,1774,1714,1640,1570,1404,1381,1336,1317,1149,1088,1071,1026,854$, 834, $759,675 \mathrm{~cm}^{-1}$; MS (ESI) m/z: 841, 432; HRMS (ESI): m/z: calcd. for $\mathrm{C}_{24} \mathrm{H}_{27} \mathrm{NO}_{5} \mathrm{Na}\left[\mathrm{M}^{+}+\mathrm{Na}\right]$: 432.17814, found 432.17790.

$\mathrm{L}=\mathrm{SIPr}$

¢ ${ }^{\text {¢\% }}$	¢.m.	-	ำูャッ?	
Noi	\%\%\%	$\dot{\square}$	ธธ่ \%	mimin inicis
11	V		VV	V V II

190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	0 ppm

®ู下\%	7\%8\%	$\stackrel{\sim}{5}$		F\%	
	- ${ }^{\text {giog }}$	$\stackrel{\text { m }}{\sim}$	すi¢ ${ }^{\text {a }}$	¢ัญ	
V11	W	\|	\| V V $/ 1 \mathrm{~V}$	V	

$-^{21.81}$

$$
\begin{aligned}
& -99.09 \\
& -95.38
\end{aligned}
$$

\%		¥	
¢i.	ตั. in mim	สั่	
V	U1W!	$1 /$	V//I

$)$

$\stackrel{\text { ̈ }}{\text { ¢ }}$	

\rightarrow 隹

[^13]
Coss)

$\begin{array}{lllllllllllllllllllll}190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & 0 & \mathrm{ppm}\end{array}$

$\underbrace{\infty}$

$\underbrace{}$

$\begin{array}{lllllllllllllllllllll}190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & 0 & \mathrm{ppm}\end{array}$

$\underbrace{\text { in }}$

$\begin{array}{lllllllllllllllllllll}190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & 0 & \mathrm{ppm}\end{array}$

No
ジ

$\begin{array}{llllllllllllll}190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70\end{array}$

\qquad

$\stackrel{\circ}{\stackrel{0}{\infty}}$

$\begin{array}{lllllllllllllllllllll}190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & 0 & p p m\end{array}$

$\begin{array}{llllllllllllllllllll}190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & 0\end{array}$

[^0]: 1 M. Sekine, M. Tobe, T. Nagayama, T. Wada, Lett. Org. Chem. 2004, 1, 179-182.
 2 H. J. Bestmann, H. Frey, Liebigs Ann. Chem. 1980, 2061-2071.
 3 N. Mézailles, L. Ricard, F. Gagosz, Org. Lett. 2005, 7, 4133-4136.

[^1]: 4 Because of the mentioned trace impurities, the integral for the aromatic protons is variable and slightly higher than expected.
 5 V. A. Kallepalli, F. Shi, S. Paul, E. N. Onyeozili, R. E. Maleczka, Jr., M. R. Smith, J. Org. Chem. 2009, 74, 91999201.

[^2]: 6 A. C. Giddens, L. Nielsen, H. I. Boshoff, D. Tasdemir, R. Perozzo, M. Kaiser, F. Wang, J. C. Sacchettini, B. R. Copp, Tetrahedron 2008, 64, 1242-1249.

[^3]: 7 a) D. Schmidt, J. Conrad, I. Klaiber, U. Beifuss Chem. Commun. 2006, 4732-4734; b) X. Zhang, M. McLaughlin, R. L. P. Muñoz, R. P. Hsung, J. Wang, J. Swidorski, Synthesis 2007, 749-753.

[^4]: 8 A. R. Katritzky, Z. Wang, M. Wang, C. D. Hall, K. Suzuki J. Org. Chem. 2005, 70, 4854-4856.

[^5]: 9 E. Knobloch, R. Brückner Synthesis 2008, 14, 2229-2246.

[^6]: ${ }^{10}$ N.G. Ramesh, K.K. Balasubramanian Tetrahedron Lett. 1991, 32, 3875-3878.

[^7]: ${ }^{11} \mathrm{CDCl}_{3}$ was desactivated prior to use by filtration over a plug anhydrous potassium carbonate.

[^8]: ${ }^{12}$ M. Solfrizzo, C. Vitti, A. De Girolamo, A. Visconti, A. Logrieco, F.P. Fanizzi J. Agric. Food. Chem. 2004, 52, 3655-3660.
 13 H. Sheridan, A.-M. Canning, J. Nat. Prod. 1999, 62, 1568-1569.

[^9]: 14 G. B. Varma, M. O. Fatope, R. G. Marwah, M. E. Deadman, F. K. Al-Rawahi, Phytochemistry 2006, 67, 1925-1930.

[^10]: 15 M. Nukina, S. Marumo, Tetrahedron Lett. 1977, 18, 3271-3272.

[^11]: 16 C. González, E. Guitián, L. Castedo, Tetrahedron 1999, 55, 5195-5206.

[^12]: 17 H. Gao, J. Zhang, Adv. Synth. Catal. 2009, 351, 85-88.

[^13]: $\begin{array}{llllllllllllllllll}190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20\end{array}$

